NEHRU COLLEGE OF ENGINEERING AND RESEARCH CENTRE (NAAC Accredited)

(Approved by AICTE, Affiliated to APJ Abdul Kalam Technological University, Kerala)

DEPARTMENT OF MECHANICAL ENGINEERING
 COURSE MATERIALS

MAT 101 LINEAR ALGEBRA AND CALCULUS

VISION OF THE INSTITUTION

To mould true citizens who are millennium leaders and catalysts of change through excellence in education.

MISSION OF THE INSTITUTION

NCERC is committed to transform itself into a center of excellence in Learning and Research in Engineering and Frontier Technology and to impart quality education to mould technically competent citizens with moral integrity, social commitment and ethical values.

We intend to facilitate our students to assimilate the latest technological know-how and to imbibe discipline, culture and spiritually, and to mould them in to technological giants, dedicated research scientists and inte llectual leaders of the country who can spread the beams of light and happiness among the poor and the underprivileged.

ABOUT DEPARTMENT

- Established in: 2002
- Course offered :
B.Tech in Mechanical Engineering
M.Tech in Machine Design
- Approved by AICTE New Delhi and Accredited by NAAC

Affiliated to the University of Dr. A P J Abdul Kalam Technological University.

DEPARTMENT VISION

Producing internationally competitive Mechanical Engineers with social responsibilities and sustainable employability through viable strategies as well as competent exposure oriented quality education.

DEPARTMENT MISSION

M1	Imparting high impact education by providing conductive teaching learning environment.
M2	Fostering effective modes of continuous learning process with moral and ethical values.
M3	Enhancing leadership qualties with social commitment, professional attitude, unity, team spint and communication skill.
M4	Introducing present scenario in research and development through collaborative efforts blended with industry and institution.

PROGRAMME EDUCATIONAL OBJECTIVES

PEONo.	Program Educational Ojjectives Staments
PE01	
PE02	
PE03	
PE04	

PROGRAM OUTCOMES (POS)

Engineering Graduates will be able to:

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
3. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
4. Conduct investigations of complex problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOMES (PSO)

PSO1	Graduates able to apply principles of engineering, basic sciences and analytics including multi-variant calculus and higher order partial differential equations.
PSO2	Graduates able to perform modelling, analysing, designing and simulating physical systems, components and processes.
PSO3	Graduates able to work professionally on mechanical systems, thermal systems and production systems.

COURSE OUTCOMES

CO1	solve systems of linear equations, diagonalize matrices and characterise quadratic forms
$\mathbf{C O 2}$	compute the partial and total derivatives and maxima and minima of multivariable functions
$\mathbf{C O 3}$	compute multiple integrals and apply them to find areas and volumes of geometrical shapes, mass and centre of gravity of plane laminas
$\mathbf{C O 4}$	perform various tests to determine whether a given series is convergent, absolutely convergent or conditionally convergent
$\mathbf{C O 5}$	determine the Taylor and fourier series expansion of functions and learn their applications.

MAPPING OF COURSE OUTCOMES WITH PROGRAM OUTCOMES

	PO 1	PO $\mathbf{2}$	PO $\mathbf{3}$	PO $\mathbf{4}$	PO 5	PO $\mathbf{6}$	PO 7	$\mathbf{P O} 8$	PO $\mathbf{9}$	PO 10	PO 11	PO 12
CO 1	3	3	3	3	2	1			1	2		2
CO2	3	3	3	3	2	1			1	2		2
CO3	3	3	3	3	2	1			1	2		2
CO4	3	2	3	2	1	1			1	2		2
$\operatorname{CO} 5$	3	3	3	3	2	1			1	2		2

	PSO1	PSO2	PSO3
CO1	1	1	
CO2	2	1	
CO3	2	1	
CO4	1	1	
CO5	1	1	

Note: H-Highly correlated=3, M-Medium correlated=2, L-Less correlated=1

SYLLABUS

Module 1 (Linear algebra)

(Text 2: Relevant topics from sections 7.3, 7.4, 7.5, 8.1,8.3,8.4)
Systems of linear equations, Solution by Gauss elimination, row echelon form and rank of a matrix, fundamental theorem for linear systems (homogeneous and non-homogeneous, without proof), Eigen values and eigen vectors. Diagonaliztion of matrices, orthogonal transformation, quadratic forms and their canonical forms.

Module 2 (multivariable calculus-Differentiation)

(Text 1: Relevant topics from sections $13.3,13.4,13.5,13.8$)
Concept of limit and continuity of functions of two variables, partial derivatives, Differentials, Local Linear approximations, chain rule, total derivative, Relative maxima and minima, Absolute maxima and minima on closed and bounded set.

Module 3(multivariable calculus-Integration)

(Text 1: Relevant topics from sections $14.1,14.2,14.3,14.5,14.6,14.8$)
Double integrals (Cartesian), reversing the order of integration, Change of coordinates (Cartesian to polar), finding areas and volume using double integrals, mass and centre of gravity of inhomogeneous laminas using double integral. Triple integrals, volume calculated as triple integral, triple integral in cylindrical and spherical coordinates (computations involving spheres, cylinders).

Module 4 (sequences and series)

(Text 1: Relevant topics from sections 9.1, 9.3, 9.4, 9.5, 9.6)
Convergence of sequences and series, convergence of geometric series and p-series(without proof), test of convergence (comparison, ratio and root tests without proof); Alternating series and Leibnitz test, absolute and conditional convergence.

Module 5 (Series representation of functions)

(Text 1: Relevant topics from sections 9.8, 9.9. Text 2: Relevant topics from sections 11.1, 11.2, 11.6)

Taylor series (without proof, assuming the possibility of power series expansion in appropriate domains), Binomial series and series representation of exponential, trigonometric, logarithmic functions (without proofs of convergence); Fourier series, Euler formulas, Convergence of Fourier series (without proof), half range sine and cosine series, Parseval's theorem (without proof).

Text Books

1. H. Anton, I. Biven,S.Davis, "Calculus", Wiley, $10^{\text {th }}$ edition, 2015.
2. Erwin Kreyszig, Advanced Engineering Mathematics, $10^{\text {th }}$ Edition, John Wiley \& Sons, 2016.

Reference Books

1. J. Stewart, Essential Calculus, Cengage, $2^{\text {nd }}$ edition, 2017
2. G.B. Thomas and R.L. Finney, Calculus and Analytic geometry, 9 th Edition, Pearson, Reprint, 2002.
3. Peter V. O'Neil, Advanced Engineering Mathematics, Cengage, 7th Edition, 2012
4. Veerarajan T., Engineering Mathematics for first year, Tata McGraw-Hill, New Delhi, 2008.
5. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 36 Edition, 2010.

Course Contents and Lecture Schedule

No	Topic	No. of Lectures
$\mathbf{1}$	Linear Algebra (10 hours)	1
$\mathbf{1 . 1}$	Systems of linear equations, Solution by Gauss elimination	3
1.2	Row echelon form, finding rank from row echelon form, fundamental theorem for linear systems	2
1.3	Eigen values and eigen vectors	4
1.4	Diagonaliztion of matrices, orthogonal transformation, quadratic forms	

$\mathbf{2}$	Multivariable calculus-Differentiation (8 hours)	
2.1	Concept of limit and continuity of functions of two variables, partial derivatives	2
2.2	Differentials, Local Linear approximations	2
2.3	Chain rule, total derivative	2
2.4	Maxima and minima	2

3	Multivariable calculus-Integration (10 hours)	
3.1	Double integrals (Cartesian)-evaluation	2
3.2	Change of order of integration in double integrals, change of coordinates (Cartesian to polar),	2
3.3	Finding areas and volumes, mass and centre of gravity of plane laminas	3
3.4	Triple integrals	3

$\mathbf{4}$	Sequences and series (8 hours)	
4.1	Convergence of sequences and series, geometric and p-series	2
4.2	Test of convergence(comparison, ratio and root)	4
4.3	Alternating series and Leibnitz test, absolute and conditional convergence	2
	.	..

$\mathbf{5}$	Series representation of functions (9 hours)	
5.1	Taylor series, Binomial series and series representation of exponential, trigonometric, logarithmic functions;	3
5.2	Fourier series, Euler formulas, Convergence of Fourier series(Dirichlet's conditions)	3
5.3	Half range sine and cosine series, Parseval's theorem.	3

QUESTION BANK

MODULE I				
Q:NO:	QUESTIONS	CO	KL	$\begin{aligned} & \text { PAGE } \\ & \text { NO: } \end{aligned}$
1	Solve the linear system whose augmented matrix is $\left[\begin{array}{ccccc}3.0 & 2.0 & 2.0 & -5.08 .0 \\ 0.6 & 1.5 & 1.5 & -5.4 & 2.7 \\ 1.2 & -0.3 & -0.3 & 2.4 & 2.1\end{array}\right]$	CO1	K3	14
2	$\begin{aligned} & \text { Solve the linear system } \quad \begin{aligned} 10 x+4 y-2 z & =14 \\ -3 w-15 x & +y+2 z=0 \\ w+x+y & =6 \\ 8 w-5 x+5 y-10 z & =26 \end{aligned} \end{aligned}$	CO1	K3	15
3	Check for consistence of the system $x+y+z=1, \quad x+2 y+4 z=2, \quad x+4 y+10 z=4$	CO1	K2	16
4	Show that the equations $3 x+4 y+5 z=a, \quad 4 x+5 y+6 z=b, \quad 5 x+6 y+7 z=c \quad$ do not have a solution unless $a+c=2 b$	CO1	K2	18
5	Find the value of β If the system has a non-trivial solution $x_{1}+x_{2}=0, x_{2}+x_{3}=0$ $x_{1}+x_{2}+\beta x_{3}=0 .$	CO1	K1	17
6	Solve the following by Gausselimination $y+z-2 w=0,2 x-2 y-3 z+6 w=2,4 x+y+z-2 w=4$.	CO1	K3	15
7	Is the matrix A is orthogonal if $\mathrm{A}=\left[\begin{array}{ccc}1 & -1 & 0 \\ -1 & 1 & 0 \\ 1 & 1 & 1\end{array}\right]$	CO1	K2	28
8	Find an eigen basis and Diagonalize the matrix $A=\left[\begin{array}{lll}-5 & -6 & 6 \\ -9 & -8 & 12 \\ -12 & -12 & 16\end{array}\right]$	CO1	K3	35
9	Find the rank. $\left(\begin{array}{ccc}0 & 1 & 0 \\ -1 & 0 & -4 \\ 0 & 4 & 0\end{array}\right)$	CO1	K2	20
10	Findout what typeof conic section doesfoll lows quadratic form represents and transform it into principal axes if $=4 x_{1}^{2}+24 x_{1} x_{2}-14 x_{2}{ }^{2}=20$	CO1	K1	42
11	Diagonalise $A=\left[\begin{array}{ccc}8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3\end{array}\right]$	CO1	K3	40

MODULE II

1	Given $f e^{x}$ siny show that the function satisfies the Laplace equation $f_{x x}+f_{y y}=0$	CO2	K2	46
2	If $f(x, y)=x^{2} y^{3}+x^{4} y$ find $f_{x y}$	CO 2	K1	45
3	Compute the differential $d z$ of the function $z=\tan ^{-1}(x y)$	CO2	K2	47
4	Find the slope of the surface $z=\sqrt{3 x+2 y}$ in the y-direction at the point $(4,2)$	CO2	K2	46
5	Find the derivative of $w=x^{2}+y^{2}$ with respect to ${ }^{\prime}$ t' along the path $x=a t^{2}, y=2 a t$	CO2	K2	45
6	Given $z=e^{x y} \quad x=2 u+v, y=\frac{v}{u}$ find $\frac{\partial z}{\partial u}$ and $\frac{\partial z}{\partial v}$	CO2	K1	47
7	Use chain rule find $\frac{d w}{d s}$ at $s=\frac{1}{4}$ if $w=r^{2}-r \tan \theta, r=\sqrt{s}, \theta=\pi s$	CO 2	K3	53
8	If $u=\log \left(x^{3}+y^{3}+z^{3}-3 x y z\right)$ show that $\left(\frac{\partial}{\partial x}+\frac{\partial}{\partial y}+\frac{\partial}{\partial z}\right)^{2} u=\frac{-9}{(x+y+z)^{2}}$	CO2	K4	54
9	If $u=\frac{x^{2}+y^{2}}{x-y}$ Find $\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}$	CO2	K1	49
10	If $w=3 x y^{2} z^{3}, y=3 x^{2}+2, z=\sqrt{x-1}$ find $\frac{d w}{d x}$ and $\frac{d w}{d y}$	CO2	K1	48
11	Locateall relative maxima, relative minima and saddle point if any of $f(x, y)=y^{2}+x y+4 y+$ $2 x+3$	CO2	K3	59
12	Let $L(x, y)$ denote the local linear approximation to $f(x, y)=\sqrt{x^{2}+y^{2}}$ at the point $(3,4)$. Compare the error in approximating $f(3.04,3.98)=\sqrt{(3.04)^{2}+(3.98)^{2}}$ by $L(3.04,3.98)$ with the distance between the points (3,4) and (3.02,3.98)	CO 2	K3	61
13	Find the absolute extremaof the function $f(x, y)=x y-4 x 0$ of R where is sthe triangular region with the vertices $(0,0),(0,4)$ and $(4,0)$	CO2	K3	62
14	If $\mathrm{u}=\mathrm{f}\left(\frac{x}{y}, \frac{y}{z}, \frac{z}{x}\right)$ prove that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}+z \frac{\partial u}{\partial z}=0$	CO 2	K2	53

MODULE III

1	Evaluate $\int_{1}^{a} \int_{1}^{b} \frac{d y d x}{x y}$	CO3	K1	64
2	The line $y=2-x$ and the parabola $y=x^{2}$ intersects at the points $(-2,4)$ and $(1,1)$. If R is the region enclosed by $y=2-x$ and $y=x^{2}$ then find $\iint_{\text {R }} y d A$	CO3	K3	68
3	Find the area bounded by the x - axis, $y=2 x$ and $x+y=1$ using double integration	C03	K3	69
4	Sketch the region of integrationand evaluate the integral $\int_{1}^{2} \int_{y}^{2^{2}} d x d y$ by changing the order of integration.	CO3	K3	72
5	Sketch the region of integration and evaluate $\int_{0}^{1} \int_{x}^{\sqrt{x}}\left(x^{2}+y^{2}\right) d y d x$	CO3	K3	70
6	By changing the order of integration evaluate $\int_{0}^{\infty} \int_{x}^{\infty} \frac{e^{-y}}{y} d y d x$	CO3	K4	75
7	Evaluate $\int_{0}^{1} \int_{0}^{1} \frac{d x d y}{\sqrt{1-x^{2}} \sqrt{1-y^{2}}}$	CO3	K1	66
8	Evaluate $\iint_{R} \frac{\sin x}{x} d A$ where Ris the triangular region bounded by $x-a x i s, y=x$, and $x=1$	CO3	K2	67
9	Change the order of integration and evaluate $\int_{0}^{1} \int_{x}^{1} \frac{x}{x^{2}+y^{2}} d x d y$	CO3	K4	77
10	Find the area bounded by the parabolas $y^{2}=4 x$ and $x^{2}=-\frac{y}{2}$	CO3	K2	66
11	Evaluate $\iint_{R} \mathrm{x}^{2}$ dA over the region Renclosed between $\mathrm{y}=\frac{16}{x}, \mathrm{y}=\mathrm{x}$, and $\mathrm{x}=8$	CO3	K3	72
12	Evaluate $\int_{0}^{3} \int_{0}^{2} \int_{0}^{1}(x y z) d x d y d z$	CO3	K1	65
13	find the volume bounded by the cylinder $x^{2}+y^{2}=4$ the planes $z=0$ and $y+z=3$	CO3	K2	79
14	Use a triple integral to find the volume of the solid within the cylinder $y=x^{2}$ and the plans $y+z=4, \quad z=0$	CO3	K3	80

MODULE IV

MODULE V

1	Find the Fourier series expansion of $f(x)=e^{-x}$ in $-c<x<c$	CO5	K3	123
2	Obtain the Fourier series for the function $f(x)=\left\{\begin{array}{cc}1+\frac{2 x}{\pi} & -\pi \leq x \leq 0 \\ 1-\frac{2 x}{\pi} & 0 \leq x \leq \pi\end{array}\right.$	C05	K3	125
3	Develop the Fourier series of $f(x)=x^{2} \quad-2<x<2$	C05	K4	127
4	Develop the Fourier series of $f(x)=e^{-x} \quad-l<x<l$	CO5	K2	129
5	Obtain the Fourier series for the function $f(x)=\left\{\begin{array}{rl}-1+x & -\pi \leq x \leq 0 \\ 1+x & 0 \leq x \leq \pi\end{array}\right.$	CO5	K3	130
6	Develop the Fourier sine series of $f(x)=\left\{\begin{array}{cc}x & 0<x<2 \\ 4-x & 2<x<4\end{array}\right.$	CO5	K3	135
7	Find the Maclaurin's series for $\frac{1}{1-x}$	CO5	K1	121
8	Find Maclaurin series for the function $x e^{x}$	CO5	K1	120
9	Find the Taylor series expansion of $\log \cos x$ about the point $x=\frac{\pi}{3}$	CO5	K2	119
10	.Find the Taylor series of $\frac{1}{x+2}$ about $x=1$	CO5	K2	118
11	Find the Fourier series of the periodic function $f(x)$ of period 4 , where $\mathrm{f}(\mathrm{x})=\begin{array}{rr} 2 & -2 \leq x \leq 0 \\ x & 0 \leq x \leq 2 \end{array}$ Deduce that (i) $1+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\frac{1}{7^{2}}+\cdots \ldots=\frac{\pi^{2}}{8}$	CO5	K4	137
12	Find the Taylor series of $\frac{1}{x}$ about $x=1$	CO5	K2	119
13	Find the half range sine series for the function $f(x)=\left\{\begin{array}{cc}x & 0<x<1 \\ 2-x & 1<x<2\end{array}\right.$	CO5	K3	140

Anear Systems of Equations
4 linear system of m equations in n unknowns $x_{1}, x_{2}, \ldots x_{n}$ is a set of equations ort the form

The system 10° called linear because each variable x_{j} appears in° the first power only, just as in the equation of a straight line, $a_{11}, a_{12} \ldots a_{m n}$ are given numbers, called coeffecents of the system. $b_{11}, b_{2}, \ldots . b_{m}$ on the right are also given number. If all the by are zero. This (1) is called a homogeneous system. If alleart one by is not zero, Thin (1) is called non homogeneous System.

A Solution of (i) is a setion of numbers $x_{1}, x_{2}, \ldots x_{n}$ that Satisfies all the m. equations.
A Solution vector of (1) in a vector x whose Components -Form a solution of (1). If the System (i) is homogeneous, it always has the trivial solution $x_{1}=0, x_{2}=0 \ldots x_{n}=0$.

Matrix -form of the Liniar System
$A x=b$ io the matrix of the linear System of equations.

Where $A=\left[a_{f k}\right]_{\operatorname{man}} 10^{\circ}$ the coefficient matrix

$$
\begin{aligned}
& A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & . \\
a_{2 n} \\
a_{n 1} & a_{n 22} & \cdots & \cdots
\end{array} a_{m n}\right] \quad x=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right] \quad b=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n n}
\end{array}\right] \\
& {\left[\left.A\right|_{B}\right] \text { or } \tilde{A}=\left[\begin{array}{cccc:c}
a_{11} & a_{12} & \ldots & a_{1 n} & b_{1} \\
a_{21} & a_{22} & \ldots & a_{2 n} & b_{2} \\
\hdashline & \ldots & \vdots & \vdots \\
a_{m 1} & a_{m 2} & \ldots . & a_{n n} & b_{n n}
\end{array}\right] \text { \&o called }}
\end{aligned}
$$

Augumented Malrex of the system (1).
Gauss Elimination and Back Substitution
In this method we reduce the augumented matrix corresponding linear system into caper -lreangular form. Then we apply She back Substitution Method.

Elementary Row operators for matres

* Interchange of two rows
* Addition of a constant multiple of one row to another row.
*. Multiplication of a how by a nonzero

Note Row equivalent linear system have the same Set y solutions.

Gauss Elimination. Three possible Cases
At the end y the Graces elemenation the form of the coefficient matrix, the augmented matrix and the system itself are called row echelon form. The number if nonzero rows in the low reduced coefficient matrix A is Called Rank of A. There are three Cases.

1) No Solution
if Rank of $[A] \neq \operatorname{Rown}$ of $[A \mid B]$ then the system is inconsistonst and hos no solution
2) Unique Solution

$$
\text { if } \operatorname{Ransk} \text { of }[A]=\operatorname{Rank} \text { of }[A B]=n \text {, no of unknowns }
$$ then system is consistamt and unique solution-

3) Infinitely many Solutions

$$
\text { if } \overline{\operatorname{Rank}} \text { of }[A]=\operatorname{Rark} \text { of }[A B]<n \text {, no y untie }
$$

then system is consistent and infinitely many Solutions.
If Ron of $[A]=r$ then Choose arbitrarily values for $n-r$ variables and solve remaining.

Phms.
Solve thi following sustem of equeations

$$
x+4+z=8 \quad x-54+2 z=6 \quad 3 x+54-7 z=14
$$

$$
\begin{aligned}
& R_{2} \rightarrow R_{2}-R_{1} \\
& R_{3} \rightarrow R_{3}-3 R_{1}
\end{aligned}\left[\begin{array}{cccc}
1 & 1 & 1 & 8 \\
0 & -2 & 1 & -2 \\
0 & 2 & -10 & -10
\end{array}\right]
$$

$$
R_{3 \rightarrow} R_{3}+R_{2}\left[\begin{array}{ccccc}
1 & 1 & 1 & 8 \\
0 & -2 & 1 & -2 \\
0 & 0 & -9 & -12
\end{array}\right]=
$$

Here Romk[A]: Rank[AB] $=$ No of unknowns
\Rightarrow Consistant \& uneque sin.

$$
\begin{array}{cl}
-93=-12 \quad 3=4 / 3 \quad & -24+z=-2 \\
& -24+4 / 3=-2 . \quad y=5 / 3 \\
& x+4+3=8 \quad \\
\because=5+5 / 3+4 / 3=8 \quad x=5 \\
\because=5 \quad y=5 / 3 \quad 3=4 / 3
\end{array}
$$

2.

The system inconsistemt and no soluetuons.

$$
\begin{aligned}
& -2 b+3 c=1 \quad 3 a+6 b-3 c=-2 \quad 6 a+6 b+3 c=5 \\
& \text { Alegumented Matrion }\left[\begin{array}{cccc}
0 & -2 & 3 & 1 \\
3 & 6 & -3 & -2 \\
6 & 6 & 3 & 5
\end{array}\right] \\
& R_{2} \leftrightarrow R_{1}\left[\begin{array}{rrrr}
3 & 6 & -3 & -2 \\
0 & -2 & 3 & 1 \\
6 & 6 & 3 & 5
\end{array}\right] \\
& R_{3} \rightarrow R_{3}-2 R_{1} .\left[\begin{array}{cccc}
3 & 6 & -3 & -2 \\
0 & -2 & 3 & 1 \\
0 & -6 & 9 & 9
\end{array}\right] \\
& \begin{array}{l}
R_{B} \rightarrow R_{3}-3 R_{2}\left[\begin{array}{cccc}
3 & 6 & -3 & -2 \\
0 & -2 & 3 & 1 \\
0 & 0 & 0 & 6
\end{array}\right] \\
R \text { ank. }[A]=2 \neq \operatorname{Rank} g[A B]=3
\end{array}
\end{aligned}
$$

31

$$
\begin{aligned}
& x+y+z=1 \\
& x+2 y+3 z=4 \\
& x+34+5 z=7 \\
& x+4 y+7 z=10
\end{aligned}
$$

Augumented Matrux

$$
\left[\begin{array}{ccc:c}
1 & 1 & 1 & 1 \\
1 & 2 & 3 & 4 \\
1 & 3 & 5 & 7 \\
1 & 4 & 7 & 10
\end{array}\right]
$$

$$
\begin{aligned}
& \begin{array}{l}
R_{2} \rightarrow R_{2}-R_{1} \\
R_{3} \rightarrow R_{3}-R_{1} \\
\left.R_{4} \rightarrow R_{4}-R\right)
\end{array} \\
& R_{3} \rightarrow R_{3}-2 R_{2} \\
& R_{4} \rightarrow R_{4}-3 R_{2}
\end{aligned} \quad\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 1 & 2 & 3 \\
0 & 2 & 4 & 6 \\
0 & 3 & 6 & 9
\end{array}\right]
$$

Rornk of $[A]=\operatorname{Rank}$ of $[A B]=2$ Consistant
Romk <3 Marsy solns..
put $\quad \beta=t$

$$
\begin{array}{rr}
y+2 z=3 & \\
y+2 t=3 & y=3-2 t \\
x+4+z=1 & x+(3-2 t)+t=1 \\
& x=1-3+2 t-t \\
& =-2+t \\
x=-24 t \quad y=3-2 t \quad z=t
\end{array}
$$

Dbms
Solve the linear system given explicitly or by its augroenied matron show details.

$$
\begin{aligned}
& x_{1}-x_{2}+x_{3}=0, \quad-x_{1}+x_{2}-x_{3}=0, \quad 10 x_{2}+25 x_{3}=90, \\
& 20 x_{1}+10 x_{2}=80
\end{aligned}
$$

A: Augmented matrix
$\left[\begin{array}{ccc:c}1 & -1 & 1 & 0 \\ -1\end{array}\right]$ Call the first row of A The pivot row and the first eqn the pevoteqn us first element is called pivot element.

$$
\begin{aligned}
& R_{2} \rightarrow R_{2}+R_{1} . \\
& R_{4} \rightarrow R_{4}-20 R_{1} .
\end{aligned}\left[\begin{array}{cccc}
1 & -1 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 10 & 25 & 90 \\
0 & 30 & -20 & 80
\end{array}\right]
$$

Pere new second eqn in the pivot eqn. But since ut has no x_{2}-term. we must change order of eqn. Move the secund eqn to last and third and fourth ear one place up. This is called partial pivoting.

$$
\begin{gathered}
{\left[\begin{array}{cccc}
1 & -1 & 1 & 0 \\
0 & \pi 10 & 25 & 90 \\
0 & 30 & -20 & 80 \\
0 & 0 & 0 & 0
\end{array}\right]} \\
R_{3} \rightarrow R_{3}-3 R_{2}\left[\begin{array}{cccc}
1 & -1 & 1 & 0 \\
0 & 10 & -20 & 80 \\
0 & 0 & -95 & -190 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Back Substifution

$$
\begin{array}{lll}
-95 x_{3}=-190 & x_{3}=\frac{190}{95}=2 & \\
10 x_{2}+25 x_{3}=90 & 10 x_{2}=90-50=40 & x_{3}=2 \\
x_{1}-x_{2}+x_{3}=0 & x_{1}-4+2=0 & x_{1}=2
\end{array}
$$

$$
x_{1}=2, x_{2}=4, \quad x_{3}=2 .
$$

$$
\begin{aligned}
& \text { 2. } \left.\begin{array}{rrr}
-3 x+8 y=5 & \text { Alegmenied } & \text { Matrex } \\
8 x-12 y=-11 & {[A / B]=\left[\begin{array}{ccc}
-3 & 8 & 5 \\
8 & -12 & -11
\end{array}\right]} \\
& R_{2} \rightarrow R_{2}=\frac{8}{-3} R_{1}
\end{array}\right]\left[\begin{array}{ccc}
-3 & 8 & 5 \\
0 & \frac{28}{3} & 4 / 3
\end{array}\right] \\
& \frac{28}{3} y=7 / 3 \quad y=7 / 3 \times \frac{3}{28}=1 / 4 . \\
& -3 x+8 y=5 \Rightarrow-3 x+8 x y_{4}=5 \\
& -3 x=+3 \quad \underline{=}=-1 \\
& x=-1 \quad y=1 / 4 \\
& 3 \quad 8 y+6 z=-4,-2 x+4 y-6 z=18, \quad x+y-z=2 . \\
& \text { Augmented Matuex }\left[\begin{array}{cccc}
0 & 8 & 6 & -4 \\
-2 & 4 & -6 & 18 \\
1 & 1 & -1 & 2
\end{array}\right] \\
& R_{2} \leftrightarrow R_{1} . \quad\left[\begin{array}{cccc}
-1 & 4 & -6 & 18 \\
0 & 8 & 6 & -4 \\
1 & 1 & -1 & 2
\end{array}\right] \\
& -R_{3} \rightarrow R_{3}-\frac{1}{-2} R_{1} \quad\left[\begin{array}{cccc}
-2 & 4 & -6 & 18 \\
0 & 8 & 6 & -4 \\
0 & 3 & -4 & 1
\end{array}\right] \\
& R_{3} \rightarrow R_{3}-\frac{3}{8} R_{2} \quad\left[\begin{array}{cccc}
-2 & 4 & -6 & 18 \\
0 & 8 & 6 & -4 \\
0 & 0 & -\frac{25}{4} & \frac{25}{2}
\end{array}\right] \\
& -\frac{25}{4} 3=\frac{25}{2} \Rightarrow 2=-2 \cdot 84+63=-4 \Rightarrow y=1 \\
& -2 x+4 y-62=8 \\
& \Rightarrow x=-1
\end{aligned}
$$

$x=-1 \quad y=1 \quad z=-2$.
$4\left[\begin{array}{ccc}13 & 12 & 6 \\ -4 & 7 & 73 \\ 4 & 5 & 11\end{array}\right]$
$R_{2} \rightarrow R_{2}-\frac{-4}{13} R_{1}$
$R_{3} \rightarrow R_{3}-\frac{4}{13} R_{1}$
$R_{3} \rightarrow R_{3}-\frac{17}{139} R_{2}$$\left[\begin{array}{ccc}13 & 12 & 16 \\ 0 & \frac{139}{13} & \frac{973}{13} \\ 0 & \frac{17}{13} & \frac{119}{13}\end{array}\right]$

$$
\begin{aligned}
& R_{2} \rightarrow R_{2}-\frac{0.6}{3.0} R_{1} \Rightarrow R_{2} \rightarrow R_{2}-2 R_{1} . \\
& R_{3} \rightarrow R_{3}-\frac{1.2}{3.0} R_{1} \Rightarrow R_{3} \rightarrow R_{3}-4 R_{1}
\end{aligned} \quad\left[\begin{array}{ccccc}
3 & 2 & 2 & -5 & 8 \\
0 & 1.1 & 1.1 & -4.4 & 1.1 \\
0 & -1.1 & -1.1 & 4.4 & -1.1
\end{array}\right]
$$

$$
R_{3} \rightarrow R_{3}-R_{2} \Rightarrow R_{3} \rightarrow R_{3}+R_{2} \quad\left[\begin{array}{ccccc}
3 & 2 & 2 & -5 & 8 \\
0 & 1.1 & 1.1 & -4.4 & 1.1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Here Rank of $[A]=\operatorname{Ranky}[A B]=2$ Consisiand-
Ranok <No. of unknowns $=4 \Rightarrow$ infincti solutions Choose $[4-2=2$ vareables arbitrarly)
put $x_{3}=3, x_{4}=t$

$$
\begin{aligned}
& 1.1 x_{2}+1 \cdot 1 x_{3}-4.4 x_{4}=1 \cdot 1 \quad \Rightarrow \quad x_{2}=1-5+4 t \\
& 3 x_{1}+2 x_{2}+2 x_{3}-5 x_{4}=8 \quad \Rightarrow \quad x_{1}=2-t \\
& x_{1}=2-t \quad x_{2}=1-5+4 t \quad x_{3}=5 \quad x_{4}=t
\end{aligned}
$$

6 Solve.

$$
\begin{aligned}
& R_{2} \rightarrow R_{2}-2 / 3 R_{1} \\
& R_{3} \rightarrow R_{3}-6 / 3 R_{2} \\
& R_{3}-2 R_{2}
\end{aligned}\left[\begin{array}{cccc}
3 & 2 & 1 & 3 \\
0 & -43 & 1 / 3 & -2 \\
0 & 0 & 0 & 12
\end{array}\right]
$$

Raok of $A(=3) \neq \operatorname{Rarok}$ of $[A B](=4)$
In consistemt. No solction.

$$
\left[\begin{array}{rrr}
{\left[\begin{array}{ccc}
4 & 0 & 6 \\
-1 & 1 & -1 \\
2 & -4 & 1
\end{array}\right]} \\
R_{2} \rightarrow R_{2}-\frac{1 / 4}{4} R_{1} \\
R_{3} \rightarrow R_{3}-\frac{1}{2} R_{1} \\
R_{3} \rightarrow R_{3}--4 R_{2} \\
R_{3}+4 R_{2} \\
R_{1}=.5
\end{array}\right.
$$

No. y unknowns $=2$

$$
\begin{aligned}
& \begin{array}{l}
R_{2} \rightarrow R_{2}-\frac{1}{4} R_{1} \\
R_{3} \rightarrow R_{3}-\frac{1}{2} R_{1}
\end{array} \\
& \begin{array}{l}
R_{3} \rightarrow R_{3}-4 R_{2} \\
R_{3}+4 R_{2}
\end{array} \\
&
\end{aligned} \quad\left[\begin{array}{ccc}
4 & 0 & 6 . \\
0 & 1 & \cdot 5 \\
0 & -4 & -2
\end{array}\right]
$$

$$
\begin{aligned}
& y=1 / 2 \\
& x=3 / 2
\end{aligned}
$$

$$
\begin{aligned}
& 8\left[\begin{array}{l}
-24-2 z=8 \\
3 x+4 y-5 z=8 \\
\text { Augumented Matrex } \quad\left[\begin{array}{cccc}
0 & -2 & -2 & 8 \\
3 & 4 & -5 & 8
\end{array}\right] \\
R_{2} \leftrightarrow R_{1} \quad\left[\begin{array}{cccc}
3 & 4 & -5 & 8 \\
0 & -2 & -2 & 8
\end{array}\right]
\end{array} .\right.
\end{aligned}
$$

$\operatorname{Rank}[A]=2=\operatorname{Rank}[A B] \rightarrow$ Consistanl-
No of unknowns $3 \quad \operatorname{Ramk}<$ no of unknowns. \rightarrow Infencis salm.

$$
\begin{gathered}
{[3-2=1] \quad \begin{array}{c}
\text { put } z=t \\
-2 y-2 z=8 \\
-24=8+2 t \\
3 x+4 y-5 z=8 \\
3 x+4(-4-t)-5 t=8 \\
3 x-16-9 t=8
\end{array}} \\
3
\end{gathered}
$$

$$
x=8+3 t
$$

$$
y=-4-t
$$

$$
3=t
$$

9.

$$
\begin{aligned}
& y+z-2 w=0 \\
& 2 x-34-3 z+6 w=2 \\
& 4 x+y+z-2 w=4
\end{aligned}
$$

Augumented Natrix.

$$
\left[\begin{array}{rrrrr}
0 & 1 & 1 & -2 & 0 \\
2 & -3 & -3 & 6 & 2 \\
4 & 1 & 1 & -2 & 4
\end{array}\right]
$$

$$
\begin{aligned}
& R_{2} \leftrightarrow R_{1} \quad\left[\begin{array}{ccccc}
2 & -3 & -3 & 6 & 2 \\
0 & 1 & 1 & -2 & 0 \\
4 & 1 & 1 & -2 & 4
\end{array}\right] \\
& R_{3} \rightarrow R_{3}-2 R_{1}\left[\begin{array}{ccccc}
2 & -3 & -3 & 6 & 2 \\
0 & 1 & 1 & -2 & 0 \\
0 & 7 & 7 & -14 & 0
\end{array}\right]
\end{aligned}
$$

$$
R_{3} \rightarrow R_{3}-7 R_{2} \quad\left[\begin{array}{ccccc}
2 & -3 & -3 & 6 & 0 \\
0 & 1 & 1 & -2 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Romk of $[A]=\operatorname{Rorr}[A B]=2<41$ no of unknowns
Consistome and infinite solutions.

$$
\begin{array}{cc}
{[4-2=2] \quad \text { put } w=t \quad 3=5} \\
y+z-2 w=0 . & y=2 t-5 \\
2 x-3 y-3 z+6 \omega=2 . & \\
2 x-2-3(2 t-5)+3 s-6 t \\
2 x=2 & x=1
\end{array}
$$

Linear independence. Rerok of a matrix.
Given any set y vectors $a_{11} a_{21} \ldots a_{m}$ a linear Combination of lhése vectors w° an expression of the - Corm $c_{1} a_{1}+a_{2} a_{2}+\ldots+c_{m} a_{m}$... Where $c_{1}, c_{2} \ldots c_{m}$ eure any scalars.
Now Consecler the equation

$$
C_{1} a_{1}+c_{2} a_{2}+\cdots+C_{m} a_{m}=0
$$

If all $c_{j}=0 \quad J=1,2, \ldots m$ thin we say that $a_{1} a_{21} \ldots$ am are linearly independent. It atlecust one of $c_{\mathrm{y}} \neq 0$ then we say $a_{1}, a_{2}, \ldots a_{m}$ are linearly dependant
Pbs Check independence of a vectors in \mathbb{R}^{3}

$$
\{(1,1,1),(-1,0,1),(0,-2,1)\}
$$

a: Let $a, b, c \in \mathbb{R}$ s. $a(1,1,1)+b(-1,0,1)+c(0,-2,1)=0$
$\Rightarrow a-b=0, \quad a-2 c=0 \quad a+b+c=0 \Rightarrow a=0, b=0, c=0$ \Rightarrow vectors are linearly independent..

Rank of a matrix A so the maximum number of linearly independent row vectors of A denoted by rook A,

1) Find the rank.

$$
\begin{aligned}
& 11 \quad \text { [rows } \\
&=\left[\begin{array}{lll}
0 & 0 & 5 \\
3 & 5 & 0 \\
5 & 0 & 0
\end{array}\right] \\
& R_{2} \leftrightarrow R_{1} {\left[\begin{array}{ccc}
3 & 5 & 0 \\
0 & 0 & 5 \\
5 & 0 & 0
\end{array}\right] } \\
& R_{3} \rightarrow R_{3}-\frac{5}{3} R_{1} \cdot\left[\begin{array}{ccc}
3 & 5 & 0 \\
0 & 0 & 5 \\
0 & -\frac{25}{3} & 0
\end{array}\right] \\
& R_{2} \leftrightarrow R_{3}\left[\begin{array}{ccc}
3 & 5 & 0 \\
0 & -\frac{25}{3} & 0 \\
0 & 0 & 5
\end{array}\right] \quad \operatorname{Rank} \text { of }[A]=3
\end{aligned}
$$

2) $\left[\begin{array}{ccc}2 & -2 & 1 \\ 0 & 4 & 8 \\ 2 & 0 & 4\end{array}\right]$

$$
R_{3} \rightarrow R_{3}-R_{1}\left[\begin{array}{ccc}
2 & -2 & 1 \\
0 & 4 & 8 \\
0 & 2 & 3
\end{array}\right]
$$

$$
R_{3} \rightarrow R_{3}-\frac{1}{2} R_{2}\left[\begin{array}{ccc}
2 & -2 & 1 \\
0 & 4 & 8 \\
0 & 0 & -1
\end{array}\right] \Rightarrow R_{\text {arak }}=3
$$

3) $\left[\begin{array}{cccc}6 & 0 & -3 & 0 \\ 0 & -1 & 0 & 5 \\ 2 & 0 & -1 & 0\end{array}\right]$

$$
\begin{align*}
& R_{3} \rightarrow R_{3}-1 / 3 R_{1} \\
& R_{\text {arak }}=2 .
\end{align*}\left[\begin{array}{cccc}
6 & 0 & -3 & 0 \\
0 & -1 & 0 & 5 \tag{7}\\
0 & 0 & 0 & 0
\end{array}\right] \text { (7) }
$$

Fundamental theorems for liners systems
a) Existence: A linear system of m equations in n unknowns $x_{1}, x_{21} \ldots x_{n}$

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2}
\end{aligned}
$$

$\left.a_{m} x_{1}+a_{m}=x_{2}+\cdots+a_{m n} x_{n}=b_{m}\right\}$ si consistent,
linat is has solcetcons, if and only if the coeppecient matrix A and the augmented matrix A^{\sim} have the Same rook, Here

$$
A .\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & & - & \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right] \text { of } \tilde{A}=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} b_{1} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & b_{2} \\
a_{m 1} & a_{m 2} & \ldots & a_{m o n}
\end{array}\right]
$$

b) Uniqueness

The System (1) has precisely one solution
if and only if this common hank r of.
A and \tilde{A} equals n
(c). Infercitely many solutions

If the common rank r is less than n, the system G) bars ingintly many solutions. All of these

Solutions are obtained by determining γ 'Suitable unknowns in leas of the remaining pro unknownits Which asbitrarly values can be assigned.
d) Gauss Elimination

Solutions exist, they can all be obtcuned by the Gauss Elmanation.

Eegen values and Eger vectors
Characteristic equation
Let. A be an $n \times n$ matrix, thin the equation $|A-\lambda I|=0$ is called the characteristic equation and Its roots are called characteristic roots or latent roots or eegen values of A
Pros
Find the eager values of the matrix $A=\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]$

$$
\begin{aligned}
& A-\lambda I!= {\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] } \\
&= {\left[\begin{array}{cc}
2-\lambda & 1 \\
1 & 2-\lambda
\end{array}\right] } \\
&|A-\lambda I|=0 \Rightarrow\left|\begin{array}{cc}
2-\lambda & 1 \\
1 & 2-\lambda
\end{array}\right|=0 \Rightarrow(2-\lambda)^{2}-1=0 \\
& 4-4 \lambda+\lambda^{2}-1=0 \\
& \lambda^{2}-4 \lambda+3=0 \\
& \lambda=1,3
\end{aligned}
$$

Even values are $1 \& 3$.
2. Find the eileen values of the matrix $A=\left[\begin{array}{lll}2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2\end{array}\right]$

$$
\begin{equation*}
|A-\lambda I|=0 \Rightarrow \lambda^{3}-S_{1} \lambda^{2}+S_{2} \lambda-S_{3}=0 \tag{8}
\end{equation*}
$$

$S_{1}=$ Sum of diagonal elements $=2+3+2=7$
$G_{2}=$ Sum of minors of diagonal eleroents

$$
\begin{aligned}
&=(6-2)+(4-1)+(6-2)=4+3+4=11 \\
& \delta_{3} \text { - Delermenart }=2(6-2)-2(2-1)+1(2-3) . \\
&=8-2-1=5 \\
& \lambda^{3}-7 \lambda^{2}+11 \lambda-5=0 \quad \lambda=1,1,5
\end{aligned}
$$

Note. Set of all eger values of A w called Spectrum of A
Properice'

1) A and A^{\top} have the same lees values.
2) Cigen values of a diagonal, lower triangular, upper triangular matrices are the diagonal elements.
3) If $\lambda \omega_{0}^{D}$ the len value of a matrix A then $1 / \lambda$ is an elgen value of A^{-1}
4) If $\lambda_{1}, \lambda_{2}, \ldots \lambda_{n}$ are the elgen values of a matrix A then $\lambda_{1}{ }^{m}, \lambda_{2}{ }^{m}, \ldots \lambda_{n}^{m}$ are the len values of A^{m}.
5) If λ is an elgen value of A and k is any conslarst then $\lambda+k$ is can ergen value $g A+k I$
6) $K \lambda$ is an ergen value of $k A$.

Eigen vectors
The nontrevial solcetion of the equation (4-AI) $x=0$ is called eegen vectun.

Ploros
Feod the elgen values and the -. corresponding elgen vectars q the matrix $A=\left[\begin{array}{ccc}8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3\end{array}\right]$

$$
\begin{aligned}
&|A-\lambda I|=0 \Rightarrow \lambda^{3}-S_{1} \lambda^{2}+S_{2} \lambda-S_{3}=0 \\
&=\lambda^{3}-18 \lambda^{2}+45 \lambda-0=0 \\
& \Rightarrow \lambda=0 \quad \lambda=3 \quad \lambda=15
\end{aligned}
$$

$A=0$ Eogen vectors are obtained by $(A-\lambda I) x=0$

$$
\begin{aligned}
& (A-0 i) x=a \\
& A x=0 \\
& {\left[\begin{array}{ccc}
8 & -6 & 2 \\
-6 & 7 & -4 \\
2 & -a & 3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]} \\
& 8 x_{1}-6 x_{2}+2 x_{3}=0 \\
& -6 x_{1}+7 x_{2}-4 x_{3}=0 \quad \frac{x_{1}}{2 x_{1}-4 x_{2}+3 x_{3}=0 \quad} \quad \begin{array}{l}
-x_{2} \\
-34-14
\end{array} \quad \frac{x_{3}}{56}=k \\
&
\end{aligned}
$$

Eigen vector. $\left[\begin{array}{l}1 \\ 2 \\ 2\end{array}\right]$
$\lambda=3$. Cegen vector obtained by $(A-\lambda I) x=0$ (9)

$$
\begin{aligned}
& {\left[\begin{array}{l}
A-3 I] x=0 . \\
\left\{\left[\begin{array}{ccc}
8 & -6 & 2 \\
-6 & 7 & -4 \\
2 & -4 & 3
\end{array}\right]-\left[\begin{array}{lll}
3 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 3
\end{array}\right]\right\}\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{ccc}
5 & -6 & 2 \\
-6 & 4 & -4 \\
2 & -4 & 0
\end{array}\right] \quad\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]} \\
5 x_{1}-6 x_{2}+2 x_{3}=0 . \\
-6 x_{1}+4 x_{2}-4 x_{3}=0 \quad \frac{x_{1}}{2 x_{1}-8}=\frac{-x_{2}}{-20+12}=\frac{x_{3}}{20-36}=k \\
2 x_{1}-4 x_{2}+0 x_{3}=0 \quad x_{1}=16 k \quad x_{2}=18 k \quad x_{3}=-16 k
\end{array}\right.}
\end{aligned}
$$

Gegen Vectos

$$
\left[\begin{array}{c}
2 \\
+1 \\
-2
\end{array}\right]
$$

$\lambda=15$ Eegen vectar oblaened by $\quad(A-15) x=0$

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
-7 & -6 & 2 \\
-6 & -8 & -4 \\
2 & -4 & -12
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]} \\
& -7 x_{1}-6 x_{2}+2 x_{3}=0 \quad \frac{x_{1}}{2 x_{1}+16}=\frac{-x_{2}}{28+12}=\frac{x_{3}}{56-36}=12 \\
& -6 x_{1}-8 x_{2}-4 x_{3}=0
\end{aligned} \quad x_{1}=40 x \quad x_{2}=-40 k \quad x_{3}=20 k=12 x_{2}-12 x_{3}=0 \quad\left[\begin{array}{l}
-4 x_{1}
\end{array}\right.
$$

$$
\text { Cegen vector }\left[\begin{array}{c}
2 \\
-2 \\
1
\end{array}\right]
$$

2) Fend the eegen values and correspording eigen vectors of the geven matrex $A=\left[\begin{array}{cc}-5 & 2 \\ 2 & -2\end{array}\right]$
Ans: $\quad|A-\lambda I|=0 \Rightarrow \lambda^{2}-S_{1} \lambda+s_{3}=0$
$S_{1} \rightarrow$ Suro of deagon Clements
$\mathrm{S}_{3} \rightarrow$ Dleterminont

$$
\begin{aligned}
\Rightarrow \lambda^{2}+7 \lambda+6 & =0 \\
\Rightarrow \lambda & =-6,-1
\end{aligned}
$$

Elgen vector corresponding to $\lambda=-6$.

$$
\begin{aligned}
&(1+6 I) x=0 \\
& x_{1}+2 x_{2}=0 {\left[\begin{array}{ll}
1 & 2 \\
2 & 4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] } \\
& 2 x_{1}+4 x_{2}=0 x_{1}=-2 x_{2} \\
& x_{1}=+2
\end{aligned}
$$

Eegen vector $\left[\begin{array}{l}+2 \\ -1\end{array}\right]$
Eegen vector Correspondmg to $\lambda=-1$

$$
\begin{aligned}
& {[1-(-1)] x=0 \Rightarrow(A+\ldots] x=0 \text {. }} \\
& {\left[\begin{array}{rr}
-4 & 2 \\
2 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]} \\
& -4 x_{1}+2 x_{2}=0 \\
& 2 x_{1}-x_{2}=0 \text {. } \\
& 2 x_{1}=x_{2} . \\
& x_{1}=1 \quad x_{2}=2
\end{aligned}
$$

Egen Vector $\left[\begin{array}{l}1 \\ 2\end{array}\right]$
3) $A=\left[\begin{array}{ll}3 & -2 \\ 9 & -6\end{array}\right]$

Ans. $|A-\lambda I|=0 \Rightarrow \lambda^{2}-S_{1} \lambda+S_{2}=0$

$$
\begin{aligned}
& \lambda^{2}-3 \lambda+(-18+18)=0 \\
& \lambda^{2}+3 \lambda=0 \quad \lambda=0,-3
\end{aligned}
$$

$\lambda=0 \quad$ Cegen veclur oblcuned by $(A-O I) x=0$

$$
\begin{array}{ll}
{\left[\begin{array}{ll}
3 & -2 \\
9 & -6
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]} & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
3 x_{1}-2 x_{2}=0 & 3 x_{1}=2 x_{2} \\
9 x_{1}-6 x_{2}=0 & x_{2}=\frac{3}{2} x_{1} \\
& \text { Put } x_{1}=1 \quad x_{2}=3 / 2
\end{array}
$$

Cegen Vector $\left[\begin{array}{c}1 \\ 3 / 2\end{array}\right]$
$A=-3$ Eegen vector obleuned by $(A-3 I) x=0$

$$
\begin{aligned}
& {\left[\begin{array}{cc}
6 & -2 \\
9 & -3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]} \\
& 6 x_{1}-2 x_{2}=0 \quad 6 x_{1}=2 x_{2} \quad x_{2}=3 x_{3} \\
& 9 x_{1}-3 x_{2}=0 \quad \text { pul } x_{p}=1 \quad x_{2}=3
\end{aligned}
$$

Gegen Vertor $\left[\begin{array}{l}1 \\ 3\end{array}\right]$
$4\left[\begin{array}{ccc}4 & 2 & -2 \\ 2 & 5 & 0 \\ -2 & 0 & 3\end{array}\right]$
$\Rightarrow|A \cdot \lambda I|=0 \quad \Rightarrow \quad \lambda^{3}-S_{1} \lambda^{2}+S_{2} \lambda-S_{3}=0$

$$
\begin{aligned}
& \lambda^{3}-12 \lambda^{2}+39 n-28=0 \\
& \lambda=1,4,7
\end{aligned}
$$

$$
\begin{aligned}
& S_{1}=12 \\
& S_{2}=1 S_{+}(12-4) \\
& =+89 \\
& S_{3}=4(15)-2(6) \\
& -2(10)=28
\end{aligned}
$$

Eigen value corresponding to $\quad \lambda=1 \quad(A-X) x=0$

$$
\begin{array}{ll}
{\left[\begin{array}{ccc}
3 & 2 & -2 \\
2 & 4 & 0 \\
-2 & 0 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]} \\
3 x_{1}+2 x_{2}-2 x_{3}=0 & \frac{x_{1}}{8}=\frac{-x_{2}}{4}=\frac{x_{3}}{12-4}=k \\
2 x_{1}+4 x_{2}+0 x_{3}=0 & x_{1}=8 k \quad x_{2}=-4 k \quad x_{3}=8 k
\end{array}
$$

eigen velios. $\left[\begin{array}{c}2 \\ -1 \\ 2\end{array}\right]$
Eegen value corresponding to $\lambda=4$.

$$
\begin{aligned}
& (1-4 I) x=0 \Rightarrow\left[\begin{array}{ccc}
0 & 2 & -2 \\
2 & 1 & 0 \\
-2 & 0 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
& 0 x_{1}+2 x_{2}-2 x_{3}=0 \quad \frac{x_{1}}{2}=\frac{-x_{2}}{4}=\frac{x_{3}}{-4}=k \\
& 2 x_{1}+x_{2}+0 x_{3}=0 \quad x_{1}=2 k \quad x_{2}=-4 k \quad x_{3}=-4 k \\
& -2 x_{1}+0 x_{2}-x_{3}=0 \quad\left[\begin{array}{c}
1 \\
-2 \\
-2
\end{array}\right]
\end{aligned}
$$

Eegan vector cossesponding to $\quad n=7$

$$
\begin{aligned}
& (A-7 I) x=0 \quad \Rightarrow\left[\begin{array}{ccc}
-3 & 2 & -2 \\
2 & -2 & 0 \\
-2 & 0 & -4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
& -3 x_{1}+2 x_{2}-2 x_{3}=0 \\
& 2 x_{1}-2 x_{2}+0 x_{3}=0 \quad \frac{x_{1}}{-4}=\frac{-x_{2}}{4}=\frac{x_{3}}{6-4}=k \\
& x_{1}=-4 R \quad x_{2}=-4 k \\
& 73=2 k \\
& -2 x_{1}+0 x_{2}-4 x_{3}=0
\end{aligned}
$$

Cegers vector $\left[\begin{array}{c}-2 \\ -2 \\ 1\end{array}\right]$

$$
\Rightarrow \quad \begin{aligned}
&|A-\lambda I|=0 \Rightarrow \lambda^{3}-S_{1} \lambda^{2}+S_{2} \lambda-S_{3}=0 \\
& S_{1}=6+0+0=6 \\
& S_{2}=32+-10+-10=12 . \\
& S_{3}=6(32)-5(40)+2(8)=192-200+16=8 / 1 \\
& \lambda^{3}-6 \lambda^{2}+12 \lambda-8=0 \Rightarrow \lambda=2,2,2 .
\end{aligned}
$$

Cegen vector corresponding to $\lambda=2$.

$$
\begin{aligned}
& (A-2 I) x=0 \\
& \Rightarrow\left[\begin{array}{ccc}
4 & 5 & 2 \\
2 & -2 & -8 \\
5 & 4 & -2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
& 4 x_{1}+5 x_{2}+2 x_{3}=0 \quad \frac{x_{1}}{-40+4}=\frac{-x_{2}}{-32-4}=\frac{x_{3}}{-8-10}=k \\
& 2 x_{1}-2 x_{2}-8 x_{3}=0 \quad x_{1}=-36 k \quad x_{2}=36 k \quad x_{3}=-18 k \\
& 5 x_{1}+4 x_{2}-2 x_{3}=0 \quad x_{3}=1
\end{aligned}
$$

Gegen Space
The ergen vectors corresponding
one and the same elgen value λ of A together with 'o' form a vectorspace called elgenspace of A corresponding to that A. Linearly independent even vectors form a basis for eigen space.

Note

1) The sum of the elements of the diagonal of a matrix is called trace of the mativi. The trace of a matrix A equals the Sum of the eegen valuer of a matrix.
2) The determinant of a matrix A equals the product of the eger values of A. Algebraic Multiplicity and Geometric multiplidy

The order M_{λ} of an eegen value λ as a root of the characteristic polynomial is called Algebraic multiplicity.

The number m_{λ} of lineally undepentut eger vectors corresponding to λ is called geometric multiplicity of λ. This mi is the dimension of the elgen space corresponding to this λ.
pho
Deterume the algebraic multiplicity and geomelmi multiplicity of the following matrices.

$$
\begin{aligned}
& {\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 2 & 1 \\
0 & 0 & 1
\end{array}\right]} \\
& S_{1}=5 \\
& \Rightarrow \quad|A-A I|=0 \Rightarrow \lambda^{3}-s_{1} A^{2}+s_{2} A-S_{3}=0 \quad \begin{array}{l}
s_{2}=7 . \\
\sigma_{3}=3
\end{array} \\
& \lambda^{3}-5 \lambda^{2}+7 \lambda-3=0 \Rightarrow \lambda-1.2
\end{aligned}
$$

Scanned by CamScanner

Algebraie multiplicity $\quad M_{1}=2$ \& $M_{3}=1 \quad$ (12)

For $\lambda=3$

$$
\left.\begin{array}{ll}
\lambda=3 \\
\begin{array}{ll}
-x_{1}+x_{2}+x_{3}=0 \\
x_{1}-x_{2}+x_{3}=0 \\
-2 x_{3}=0 . & \frac{x_{1}}{1+1}=\frac{-x_{2}}{-1-1}=\frac{x_{3}}{1-1}=k \\
0 & -1 \\
1 & 1
\end{array} 1 \\
0 & 0 \\
-2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Eyen vector $\left[\begin{array}{l}2 \\ 2 \\ 0\end{array}\right]$ or $\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$
Geomelrei multipliety
Number of unclependent eyen vector Larrespondry to $\lambda=3$ is $1 \Rightarrow m_{3}=1$

For $\lambda=1$

$$
(A-I) x=0 .\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

$$
x_{1}+x_{2}+x_{3}=0 \quad \text { put. } x_{2}=t_{1} \quad x_{3}=t_{2}
$$

$$
x_{1}+x_{2}+x_{3}=0
$$

$$
x_{1}=-t_{1}-t_{2} .
$$

put $\quad t_{1}=1$

$$
\begin{array}{lll}
x_{1}=-1 & x_{2}=1 & x_{3}=0 .
\end{array}
$$

elgen vector $\left[\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right]$
put $t_{1}=0$

$$
\begin{array}{ll}
t_{1}=0 & x_{1}-1 \\
t_{2}=1 \\
x_{2}=0 \\
x_{3}=1
\end{array} \quad \text { eegen vector }\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]
$$

These eyen vectors are lenearly independent. Geomelrie multiplicity of $\lambda=1 \quad \cdots \quad m_{i}=2$

Nlagonalization
If a squarematrix A q order $n \times n$ has 'n' lenearly andepersdent ergen vectors. x i' a model matrex whech is formed by grouping the eigen vectors of A. Tihen A can be diagonale'sable such that $X^{-1} A X=D$. And D is the Diagonal matrex with deagonal entries are egein Values.

$$
\begin{aligned}
& X^{-1} A x=D \\
& A=X D X^{-1} \\
& A^{2}=x D^{2} x^{-1} \\
& A^{D}=x D^{n} x^{-1}
\end{aligned}
$$

Pbros.
Fend the matrin x whech deagonalezes the matrix $A=\left[\begin{array}{ll}4 & 1 \\ 2 & 3\end{array}\right]$. verfy that $X^{\prime} A X=D, a$ deagonal matrix \rightarrow is deagonalezable by the matrex X whose. Columns are lenearly undependent elgen veetors of
$A \quad A=\left[\begin{array}{ll}4 & 1 \\ 2 & 3\end{array}\right]$

$$
|A-\lambda I|=0 \Rightarrow \lambda^{2}-s_{1} \lambda+s_{3}=0 \Rightarrow \lambda^{2}-7 \lambda+10=0 \Rightarrow \lambda=2,5
$$

When $\lambda=2$

$$
\begin{array}{ll}
(a-2 \perp) x=0 & {\left[\begin{array}{ll}
2 & 1 \\
2 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]} \\
2 x_{1}+x_{2}=0 \quad x_{2}=-2 x_{1} \quad \text { Put } x_{1}=1 \quad x_{2}=-2 .
\end{array}
$$

Eegen vector for $\lambda=2$ is $\left[\begin{array}{c}1 \\ 2\end{array}\right]$
$\lambda=5$

$$
(A-5 I) x=0 \quad\left[\begin{array}{cc}
-1 & 1 \\
2 & -2
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

$-x_{1}+x_{2}=0 \quad x_{1}=x_{2} \quad$ Dut $x_{1}=1 \Rightarrow x_{2}=1$
eigen veclon for $\lambda=5$ in $\left[\begin{array}{l}1 \\ 1\end{array}\right]$
Hence the malux $X=\left[\begin{array}{cc}1 & 1 \\ -2 & 1\end{array}\right]$

$$
\begin{aligned}
X^{-1} & =\left[\begin{array}{cc}
1 / 3 & -1 / 3 \\
-2 / 3 & 1 / 3
\end{array}\right] \\
X^{-1} X & =\left[\begin{array}{cc}
1 / 3 & -1 / 3 \\
-2 / 3 & 1 / 3
\end{array}\right]\left[\begin{array}{ll}
4 & 1 \\
2 & 3
\end{array}\right]\left[\begin{array}{cc}
1 & 1 \\
-2 & 1
\end{array}\right]=\left[\begin{array}{ll}
2 & 0 \\
0 & 5
\end{array}\right]=D
\end{aligned}
$$

2. Dleagonalize if possible $\left[\begin{array}{ll}5 & 3 \\ 3 & 5\end{array}\right]$

$$
\rightarrow \quad x=\left[\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right]
$$

Quadratec -Poim
The general quadratic form in two vareable is $a x^{2}+b y^{2}+2 h x y$

The cosresposing matrin lorvo is

$$
\begin{array}{r}
{\left[\begin{array}{ll}
x & y
\end{array}\right]\left[\begin{array}{ll}
a & h \\
h & b
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]} \\
\dot{u} Q=x^{\top} A x .
\end{array}
$$

The quadratie form in 3 varable is $a x^{2}+b y^{2}+c^{2}+$ $2 h x y+2 f 4 z+2 g 2 x$. The cospespending mation foxm

$$
\left[\begin{array}{lll}
x & y & z
\end{array}\right]\left[\begin{array}{lll}
a & h & g \\
b & b & f \\
a & f & c
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]
$$

Transformation to Principal axes [Canonical form]
If you give a square matron A First. Fund the engen vectors and fend the normalised form of elgen vectors.

$$
\text { normalised }\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
\frac{x_{1}}{\sqrt{x_{1}+x_{1}^{2}+x_{3}}} \\
\frac{x_{2}}{\sqrt{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}}} \\
\frac{x_{3}}{\sqrt{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}}}
\end{array}\right]
$$

then form the orthogonal matrix x by grouping the normalesed elgen vectors, then -diagonalise the matrix $X^{-1} A X=D=\left[\begin{array}{lll}\lambda_{1} & 0 & 0 \\ 0 & \lambda_{2} & 0 \\ 0 & 0 & \lambda_{3}\end{array}\right]$ The cemoneal form equal to $\lambda_{1} y_{1}{ }^{2}+\lambda_{2} y_{2}{ }^{2}+\lambda_{3} y_{3}{ }^{2}$ Phons
find out what type of conic section does following quadratic form represents and transplant It to principal axes. $Q=17 x_{1}^{2}-30 x_{1} x_{2}+17 x_{2}^{2}=128$ $\rightarrow 17 x_{1}^{2}-30 x_{1} x_{2}+17 x_{2}^{2}=128$

$$
\begin{gathered}
a=17 \\
A=\left[\begin{array}{ll}
a & h \\
h & b
\end{array}\right]=\left[\begin{array}{cc}
17 & -15 \\
-15 & 17
\end{array}\right]
\end{gathered}
$$

$$
|A-A I|=0 \Rightarrow \lambda^{2}-34 \lambda-64=0 \quad \lambda=2,32 .
$$

Hence the quadratic form is $2 y_{1}{ }^{2}+32 g_{2}{ }^{2}=128$
$\frac{y_{1}{ }^{2}}{64}+\frac{y_{2}{ }^{2}}{4}=1 \Rightarrow 16$ is an ellepse.
When $\lambda=2$

$$
\begin{aligned}
& \text { (1-2I)x=0} \lambda \Rightarrow\left[\begin{array}{cc}
15 & -15 \\
-15 & 15
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& \quad 15 x_{1}-15 x_{2}=0 \Rightarrow x_{1}=x_{2} \quad \text { put } x_{1}=1 \Rightarrow x_{2}=1 .
\end{aligned}
$$

Elgen vectar $\left[\begin{array}{l}1 \\ 1\end{array}\right]$
normalizing we gel $\left[\begin{array}{c}\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}}\end{array}\right]$ When $\lambda=32$

$$
\begin{aligned}
& (A-32 I) x=0 \Rightarrow\left[\begin{array}{ll}
-15 & -15 \\
-15 & -15
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& -15 x_{1}-15 x_{2}=0 \Rightarrow x_{2}=-x_{1} . \quad \text { put } x_{1}=1 \Rightarrow x_{2}=+1 .
\end{aligned}
$$

Cegen vectur $\left[\begin{array}{c}-1 \\ 1\end{array}\right]$
normalezung $\left[\begin{array}{c}\frac{-1}{\sqrt{2}} \\ 1 / \sqrt{2}\end{array}\right]$

$$
\text { Model mutrix }=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right]
$$

Transforming anto prenerpal axes we have

$$
\begin{aligned}
& {\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=x y=\left[\begin{array}{cc}
\frac{1}{r_{2}} & -\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]} \\
& x_{1}=\frac{1}{\sqrt{2}} y_{1}-1 / \sqrt{2} y_{2} \quad x_{2}=\frac{1}{\sqrt{2}} y_{1}+1 / \sqrt{2} y_{2} .
\end{aligned}
$$

2 Transform to canonceal form and to panciped one

$$
\begin{array}{ll}
\rightarrow & 4 x_{1}^{2}+24 x_{1} x_{2}-14 x_{2}^{2}=20 \\
& x_{1}=\frac{2}{\sqrt{5}} y_{1}+\frac{1}{\sqrt{5}} y_{2} \quad x_{2}=\frac{1}{\sqrt{5}} y_{1}-2 / \sqrt{5} y_{2} . \\
3.7 x_{1}^{2}+3.2 x_{1} x_{2}+1.3 x_{2}^{2}=4.5 \\
\rightarrow & x_{1}=\frac{2}{\sqrt{5}} y_{1}+1 / \sqrt{5} y_{2} \quad x_{2}=1 / \sqrt{5} y_{1}-2 / \sqrt{5} y_{2} .
\end{array}
$$

4. Diagonalize the matrix $A=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 3 & -1 \\ 0 & -1 & 3\end{array}\right]$
$\Rightarrow D=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 4\end{array}\right]$
5 Reduce the quadratic form to Canonical form

$$
Q=x^{2}+3 y^{2}+3 z^{2}-2 y z
$$

$$
\begin{array}{rl}
\rightarrow \quad a=1 & b
\end{array} \quad \begin{array}{rl}
c=3 & 2 b=0
\end{array} \quad b=0
$$

$$
|A-\lambda I|=0 \Rightarrow \lambda^{3}-7 \lambda^{2}+14 \lambda-8=0 \quad \lambda=1,2,4 .
$$

$$
\lambda=1 \quad(A-I) x=0
$$

$$
\begin{aligned}
& =(A-I) x=0 \\
& \left.\begin{array}{l}
0 x+0 y+0 z=0 \\
0 x+2 y-z=0 \\
0 x-y+2 z=0
\end{array}\right\}
\end{aligned}
$$

$$
\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 2 & -1 \\
0 & -1 & 2
\end{array}\right]\left[\begin{array}{l}
x_{0} \\
x_{2} \\
b_{k}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

$$
\frac{x}{4-1}=\frac{-y}{0}=\frac{3}{0}=k
$$

$$
\Rightarrow x=3 k \quad y=0 \quad 3=0
$$

Gegen Vector. $\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$
normalesed form $\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$.
When $\lambda=2$

$$
\begin{aligned}
& \frac{\ln x=2}{(A-2 I) x=0} \Rightarrow\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & -1 \\
0 & -1 & 1
\end{array}\right]\left[\begin{array}{l}
x 4 \\
y \\
2
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
& a x+0 y+0 z=0 \\
& 0 x+y-z=0 .
\end{aligned} \quad \frac{x}{0}=\frac{-y}{1}=\frac{3}{-1}=k .
$$

Gegen vector $\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]$
normalesed. form

$$
\left[\begin{array}{l}
0 \\
\frac{1}{\sqrt{2}} \\
1 / \sqrt{2}
\end{array}\right]
$$

$$
\left.\begin{array}{rl}
\lambda=4 \\
-3 x+04+0 z=0 \\
0 x-y-3=0 & (4-4) x=0 \\
0 x-4-z=0 & \frac{x}{0}=\frac{-y}{3}=\frac{3}{3}=k \\
0 & -1
\end{array}\right]\left[\begin{array}{ccc}
-3 & 0 & 0 \\
0 & -1 \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Eegen vector $\left[\begin{array}{c}0 \\ -1 \\ 1\end{array}\right]$
normaluzed Vector. $\left[\begin{array}{c}0 \\ -1 / r_{2} \\ y_{1}\end{array}\right]$

$$
X=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 / \sqrt{2} & -4 \sqrt{2} \\
0 & 1 / \sqrt{2} & 1 / \sqrt{2}
\end{array}\right]
$$

Transform 10 prunciped axis $\left[\begin{array}{l}x \\ y_{2}\end{array}\right]=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 / \sqrt{2} & -y_{\sqrt{2}} \\ 0 & y \sqrt{2} & 1 / \sqrt{2}\end{array}\right]\left[\begin{array}{l}x_{1} \\ y_{1} \\ z_{1}\end{array}\right]$

6 Deagonalese matux $A=\left(\begin{array}{ll}2 & 3 \\ 0 & 1\end{array}\right]$ and $\operatorname{Sent} A^{5}$ $\Rightarrow|\lambda-\lambda i|=0 \Rightarrow \lambda^{2}-3 \lambda+2=0 \quad \lambda=1,2$.

$$
\begin{aligned}
& \underline{\lambda=1}(A-I) x=0 \Rightarrow\left[\begin{array}{ll}
1 & 3 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& x_{1}+3 x_{2}=0 \Rightarrow x_{1}=-3 x_{2} . \quad x_{2}=1 \Rightarrow x_{1}=-3
\end{aligned}
$$

Eigen vector $x_{1}=\left[\begin{array}{c}-3 \\ 1\end{array}\right]$

$$
\begin{array}{r}
\hat{A=2}(4-2 I) x=0 \Rightarrow\left[\begin{array}{cc}
0 & 3 \\
0 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] . \\
-3 x_{2}=0 \quad x_{2}=0 .
\end{array}
$$

x_{1} cean be taken any value $x_{1}=1$

$$
\begin{aligned}
& X_{2}=\binom{1}{0} \\
& \text { Model matrax } \quad X=\left[\begin{array}{cc}
-3 & 1 \\
1 & 0
\end{array}\right] \quad X^{-1}=\left[\begin{array}{cc}
0 & -1 \\
-1 & -3
\end{array}\right] \\
& X^{-1} A X=\left[\begin{array}{cc}
-5 & 1 \\
1 & 0
\end{array}\right]^{-1}\left[\begin{array}{ll}
2 & 3 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
-3 & 1 \\
1 & 0
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right]=0 . \\
& X^{-1} A X=D \Rightarrow A=\times 0 X^{-1} \\
& A^{5}=x D^{5} X^{-1} \quad D^{5}=\left[\begin{array}{cc}
1 & 0 \\
0 & 32
\end{array}\right] \\
& A^{5}=\left[\begin{array}{cc}
-3 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 32
\end{array}\right]\left[\begin{array}{cc}
0 & -1 \\
-1 & -3
\end{array}\right]=\left[\begin{array}{cc}
-32 & -93 \\
0 & -1
\end{array}\right]
\end{aligned}
$$

$$
x^{-1} A x=D \Rightarrow A=x D x^{-1}
$$

\rightarrow The Sumontrei mataix with all ergen values. are positive is called a partive defomber matrex \rightarrow Posidive senidefenste malrix war dopened ar al Summetrei malui with nonnegative elgen valus
\rightarrow Negative Definite matrix is a Hermitian malar all of Whose ergen values are negative
\rightarrow A negative Semidefenite matrix is a Hermitian matrix all of whose eigen values are now positive [Hermitian Square matrix is a complex square malrien that is equal to its own Conjugate transpose]

Orthogonal Transformations
A real matrix A called orthogonal if $A^{A}=A^{-1}$ Or $A \cdot A^{\top}=I$.
Orthogonal transformations are transformations $y=A x$. Where A is an $0<$ thogonal mature x.
\rightarrow Dleterminam of an orthogonal matrix has the Value for - 1
Proob $\operatorname{det} A B=\operatorname{det} A \cdot \operatorname{det} B$.

$$
\begin{aligned}
& \operatorname{det} A^{\top}=\operatorname{det} A \cdot \\
& 1=\operatorname{det}(I)=\operatorname{det}\left(A A^{-1}\right)=\operatorname{det}\left(A A^{\top}\right)=\operatorname{det} A \cdot \operatorname{det} A^{\top} \cdot(\operatorname{det}(A)]^{\top}
\end{aligned}
$$

$$
\therefore \operatorname{det}(A)= \pm 1
$$

\rightarrow The ergen values f an orthogonal matrix A are real or complex conjugates in pairs abd have absolute value 1.

G:

$$
\begin{aligned}
& A=\left[\begin{array}{cc}
\cos \varphi & -\sin c e \\
\sin \varphi & \cos \theta
\end{array}\right] \\
& \text { - } A^{\top}=\left[\begin{array}{cc}
\text { cosce } & \text { since. } \\
\text {-snce } & \text { cosce }
\end{array}\right] \\
& A \cdot A^{\top}=\therefore\left[\begin{array}{cc}
\cos \theta & -\sin c e \\
\text { Since } & \cos c e
\end{array}\right]\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \omega & \cos \theta
\end{array}\right] \\
& =\left[\begin{array}{cc}
\cos ^{2} \theta+\sin ^{2} \theta & \cos \theta \sin \varphi-\sin \theta \cos \varphi \\
\sin \theta \cos \theta-\cos \theta \sin \theta & \sin ^{2} \theta+\cos ^{2} \theta
\end{array}\right] \\
& =\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=I .
\end{aligned}
$$

$\Rightarrow A$ Orthogonal

Multivareable Caleulus - Defferenciation

Parteal derevateves
If f is a -function of one vareable then the derevateve of f w.rto x is denoled by $\frac{d p}{d x}$.
if ' f ' is a function of two vareables $x d y$ then the derevaleves are called parteal derivateves and parteal derevalive of f w.r.10 x is denoted by $\frac{\partial f}{\partial x}$ or f_{x}.
partical dervalive of if w.rto y is denoted by $\frac{\partial f}{\partial y}$ or f_{y}.
Problems

$$
\begin{aligned}
& \text { find } \frac{\partial z}{\partial x} \text { and } \frac{\partial x}{\partial y} \text { if } z=x^{4} \sin \left(x y^{3}\right) \\
& \rightarrow \quad A \quad Z=x^{4} \sin \left(x y^{3}\right) \text {. } \\
& \frac{\partial z}{\partial x}=x^{4} \cos \left(x y^{3}\right) \cdot y^{3}+\sin \left(x y^{3}\right) \times 4 x^{3} \\
& \frac{\partial z}{\partial y}=x^{4} \omega s\left(x y^{3}\right) \times 3 x y^{2} \text {. } \\
& \text { 2. } f(x, y)=2 x^{3} y^{2}+2 y+4 x \text {. .ind } f_{x}(1,3) \text { of } f_{y}(1,3) \\
& \rightarrow f_{x}=6 x^{2} y^{2}+4 \quad f_{x}(1,3)=58 \\
& f_{y}=4 x^{3} y+2 \quad f_{y}(1,3)=14
\end{aligned}
$$

$3 \quad f(x, y, z)=x^{3} y^{2} z^{4}+2 x y+z \quad$ compile $\quad f_{x}, f_{y}, f_{z}$
$\rightarrow \quad f_{x}=y^{2} z^{4}+2 y \quad f_{y}=2 y z^{3} z^{4}+2 x \quad f_{z}=4 x^{3} y^{2} z^{3}+1$
$4 \quad f(\rho, \phi, \varphi)=\rho \phi \cos \phi \sin \theta$. find $f_{\rho}, f_{\theta}, f_{\phi}$
$5 \quad z=e^{3 x} \sin y$ find $\frac{\partial z}{\partial x}$ at $(x, 0)$ and $\frac{\partial z}{\partial y}(\log 3,0)$
2 $f(x, y)=x e^{-y}+5 y$. Find the slope of the surface $z=f(x, y)$ in the x-direction at $(2,5)$
\rightarrow Slope of z in the x direction $=\frac{\partial z}{\partial x}$

$$
=e^{2 x} g
$$

$$
\text { at }\left(2,5 \quad=e^{-5}\right.
$$

$7 f^{f}(x, y)=\sin \left(y^{2}-4 x\right)$ find the rale of change of the surface $z=f(x, y)$ w.r.to y at the pt $(3,1)$
\rightarrow with x fined

$$
8 \cdot \begin{aligned}
& \frac{\partial f}{\partial y}=\cos \left(y^{2}-4 x\right) \times 2 y \\
& \text { at }(3,1)=\cos (1-4 \times 3) \times 2=2 \cos (-11)=2 \cos 11 \\
& z=(x+y)^{-1} \quad \text { find } \quad \frac{\partial z}{\partial x} \text { at }(-1,4) \\
& \frac{2 z}{\partial x}=-\frac{1}{(x+y)^{2}} \quad \text { at }(-1,4)=-1 / 9
\end{aligned}
$$

9. A pt moves along intersection of any thick, paraboloid $z=x^{2}+3 y^{2}$ and the plane $y=1$ at What rate is z changing wirito x when the pt at $(3,1,12)$
\rightarrow Given $z=x^{2}+3 y^{2}$ and $y=1 \Rightarrow z=x^{2}+3$

10. $f(x, y)=y^{3} e^{-5 x} \quad$ find $\quad f_{y y x x}$ at $(0,1)$

$$
\begin{aligned}
& f_{y}=3 y^{2} e^{-5 x} \\
& f_{4 y}=64 e^{-5 x} \\
& f_{44 x}=-304 e^{-5 x} \\
& -f_{44 x x}=1504 e^{-5 x} . \\
& f_{44 x x}(0,1)=150
\end{aligned}
$$

H-legher order Parteal derevateves

$$
\begin{aligned}
& \frac{\partial^{2} f}{\partial x^{2}}=f_{x x}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right), \quad \frac{\partial^{2} f}{\partial y^{2}}=\frac{\partial}{\partial u}\left(\frac{\partial f}{\partial u}\right)=f_{y y} \\
& \frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial u}\right)=f_{4 x} . \quad \frac{\partial^{2} f}{\partial u \partial x}=\frac{\partial}{\partial u}\left(\frac{\partial f}{\partial x}\right)=f_{x y}
\end{aligned}
$$

The sast liwo parteal dercuatives are called mexed partial derevatives.

Nepferenteabiuly
A function f q two varsablep x, y is said to be defferenteable at $\left(x_{0}, y_{0}\right)$ Provided $f_{x}\left(x_{0}, y_{0}\right)$ and $f_{y}\left(x_{0}, y_{0}\right)$ both exits and $\operatorname{linin}_{(\Delta x, \Delta y) \rightarrow(0,0)} \frac{\Delta f-f_{x}\left(x_{0}, y_{0}\right) \Delta x-f_{y}\left(x_{0}, y_{0}\right) \Delta y}{\sqrt{\Delta x^{2}+\Delta y^{2}}}=0$ Where $\Delta f=f\left(x_{0}+\Delta x, y_{0}+\Delta y\right)$ $f\left(x_{0}, y_{0}\right)$
A function of there variables x, y, z in sand to be differentiable at $\left(x_{0}, y_{0}, z_{0}\right)$ if $f_{x}\left(x_{0}, y_{0}, z_{0}\right)$, $-f_{4}\left(x_{0}, y_{0}, z_{0}\right), f_{z}\left(x_{0}, y_{0}, z_{0}\right)$ exist and

$$
\lim _{(\Delta x, \Delta u, 0 y) \rightarrow(0,0,0)} \frac{\Delta p-P_{x}\left(x_{0}, y_{0}, z_{0}\right) \Delta x-f_{4}\left(x_{0}, y_{0}, z_{0}\right) \Delta y-f_{2}\left(x_{0}, y_{0}, x_{0}\right) \Delta \Delta^{3}}{\Delta x^{2}+\Delta y^{2}+\Delta \alpha_{2}^{2}}=0
$$

Where $\Delta f=f\left(x_{0}+\Delta x, y_{0}+\Delta 4, z_{0}+\Delta_{3}\right)-f\left(x_{0,}, y_{0}, z_{0}\right)$
Problems
9.1 $f(x, y)=x^{2}+y^{2}$ is defferenteable at $(0,0)$

$$
\begin{aligned}
& \rightarrow \quad f_{x}=2 x \quad f_{4}=2 y \\
& f_{x}(0,0)=0 \quad f_{y}(0,0)=0 \\
& \Delta f=f(0+\Delta x, 0+\Delta 4)-f(0,0)=\Delta x^{2}+\Delta y^{2} \\
& \lim _{(\Delta x, \Delta y) \rightarrow(0,0)} \frac{\Delta_{f}-f_{x}^{2}\left(x_{0}, y_{0}\right) \Delta x-f_{4}\left(x_{0}, y_{0}\right) \Delta y}{\sqrt{\Delta x^{2}+\Delta y^{2}}} \\
& \lim _{(x, \Delta y) \rightarrow(0,0,0} \frac{\Delta x^{2}+\Delta y^{2}}{\sqrt{\Delta x^{2}+\Delta y^{2}}}=\lim _{\Delta x \rightarrow 10}^{\Delta y \rightarrow 0} 0 \sqrt{\Delta x^{2}+\Delta y^{2}}=\theta \text {. }
\end{aligned}
$$

2) S. $f(x, y, 3)=x^{2}+y^{2}+z^{2}$ vi defferenteable oft $(0,8, \ldots)$ Thorem
3) If a function is defferentiable al a promatz II. is Continuous at that pont
4) If all ist ordea pealonal derivalives exist and are conlmuous al a poom than if in defperenteable at that porst.
Pbros

$$
x+y^{2}
$$

$32 \quad 3.7 \quad f(x, y, a)=$ "differremicable every where
$\rightarrow \quad \frac{\partial f}{\partial x}=1 \quad \frac{\partial s}{\partial u}=\alpha \quad \frac{\partial f}{\partial z}=y$ are difened and Contunuous every where. So fies dytever,inge.
4) ST $f(x, y)=x^{\text {Qamany }}$ is difperenicable everywhere."
5) ST $f(x, y, z)=x y \sin z$ is difperenticable every where.
Dyberenticals
If $z=f(x, y)$ is depperenticable at a porns (x, y) thin $d z=f_{x}(x, y) d x+f_{y}(x, y) d y$ is the total deperential of z or f at (x, y).
if $\quad \omega=f(x, y, z)$ lhen
dw. $f_{x}(x, y, z) d x+f_{y}(x, y, z) d y+f_{z}(x, y, z) d_{z}$ is called tolal dipderenteal q a at (x, y, z).

Change Δz in $z \approx d z$
si Change $O z$ in z is approximately the differenteal $d z$ where $d x$ is change in x and $d y$ is Change in y.

If $\Delta x, \Delta y$ are close to 0 , the magnitude of the error in the approximation will be mueb smaller them the distomee $\sqrt{D x^{2}+\Delta y^{2}}$ blow (x, y) and $(x+\Delta x, y+\infty y)$
Problems
n Find approximately the change in $z=x y^{2}$ at $(0.5,1)$ to its value at $(0.503,1.004)$. Compare the magnitude of the error in the appronimotion with the distance bTw $(0.5,1)$. (0.503, 1.004)

$$
\rightarrow \begin{aligned}
d z & =\frac{\partial x}{\partial x} d x+\frac{\partial z}{\partial u} d y \\
& =y^{2} d x+2 x y d y \\
d x & =.003 \quad d y=.004 \\
\therefore d z & =10.003+2 \times .5 \times 1 \times .004=.007
\end{aligned}
$$

Change Δz in z is. 007
By actual calculation cboroge Δz in $z 10^{\circ}$

$$
.503(1.004)^{2}-5 \times(1)^{2}=.007032048
$$

$$
\text { Errol }=00003204 \%
$$

Dotero.e b/w pts $=\sqrt{(\operatorname{cov})^{2}+(.004)^{2}}=.005$

$$
\therefore \frac{|d z-\Delta x|}{\sqrt{\Delta x^{2}+\Delta y^{2}}}=\frac{000032048}{.005}=0069096<y / 15
$$

The length. Width and height of a.
rectangular box are measured with an eras almost 5%. Find the maximum \% essex that result of these quantities are used to Calculate the deagenal of the bore
\rightarrow of x is length, y breadth, z height..
then $D=\sqrt{x^{2}+4^{2}+z^{2}}$
deferential $d D=\frac{\partial D}{\partial x} d x+\frac{\partial D}{\partial y} d y+\frac{\partial D}{\partial z} d z$

$$
=\frac{1}{2 \sqrt{x^{2}+4^{2}+z^{2}}} 2 x d x+\frac{1}{2 \sqrt{x^{2}+y^{2} z^{2}}} 24 d y+\frac{1}{2 \sqrt{x^{2}+y+z^{2}}} 2 d x
$$

$$
d D=\frac{x d x+y d y+z d z}{\sqrt{x^{2}+y^{2}+z^{2}}}
$$

Given $\left|\frac{\Delta x}{x}\right| \leq 0.05 \quad\left|\frac{\Delta y}{4}\right| \leq 0.05 \&\left|\frac{\Delta z}{2}\right| \leq 005$

$$
\begin{aligned}
\therefore \frac{\Delta D}{D} \approx \frac{d D}{D} & =\frac{x d x+4 d y+z d z}{\sqrt{x^{2}+y^{2}+z^{2}} \cdot \sqrt{x^{2}+y^{2}+z^{2}}} \\
& =\frac{x \Delta x+4 \Delta u+3 \Delta z}{x^{2}+y^{2}+z^{2}} \\
& =\frac{x^{2} \cdot \frac{\Delta x}{x}+y^{2} \cdot \frac{\Delta y}{y}+z^{2} \cdot \frac{\Delta z}{2}}{x^{2}+y^{2}+z^{2}}
\end{aligned}
$$

$$
\leq \frac{0.05\left(x^{2}+4^{2}+3^{2}\right)}{x^{2}+4^{2}+3^{2}}=0.05
$$

\therefore Max $\%$ of error in $D i s 5 \%$
Local linear approximation
If a differentiable at a point $\left(x_{0}, y_{0}\right)$

$$
L(x, y)=f\left(x_{0}, y_{0}\right)+f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{x}\right)
$$

\& called local linear approximation to f at $\left(x_{0}, y_{0}\right)$.

If f is function of three variables and f is differentiable at $\left(x_{0}, y_{0}, z_{0}\right)$ thin Local linear approximation to f at $\left(x_{0}, y_{0}, z_{0}\right) \quad n^{\prime}$

$$
\begin{aligned}
& L(x, y, z)=f\left(x_{0}, y_{0}, z_{0}\right)+f_{x}\left(x_{0}, y_{0}, z_{0}\right)\left(x-x_{0}\right)+f_{4}\left(x_{0}, y_{0}, z_{0}\right)\left(y-y_{0}\right) \\
&+f_{z}\left(x_{0}, y_{0}, z_{0}\right)\left(z-z_{0}\right)
\end{aligned}
$$

Phons
Let $L(x, y)$ denote the local liners appro. ximation to $f(x, y)=\sqrt{x^{2}+y^{2}}$ at (3,4) compare the error in approximating $f(3.04,3.98)$ by $L(3.04,3.98)$ with the distance b/w $(3.4),(3.04,398)$

5

$$
\begin{aligned}
L(x, y) & =f(3,4)+f_{x}(3,4)(x-3)+f_{y}(3,4)(y-4) \\
& =5+\frac{3}{5}(x-3)+4 / 5(y-4) \\
L(3.04,3.98) & =5+3 / 5 \times .04+415 \times-0.02=5.008 \\
f(3.04,3.98) & =\sqrt{(3.04)^{2}+(3.98)^{2}} \approx 5.00819 . \\
f_{1 r 01} & =00019 .
\end{aligned}
$$

Distance b/w the pts $\approx \sqrt{(-04)^{2}+(02)^{2}} \approx .045$ error less than 1/200 of the distance. the pts.
2. Find focal linear approximation $f(x, y, z)=x y z$ the PF $P(1,2,3)$. Compare the error in approximating fly L at the specified $p l-$ $Q(1.001,2.002,3.003)$ with the distance bless P and $C l$.

$$
\rightarrow \quad \begin{aligned}
& L(x, y, 3)=6+6(x-1)+3(x-2)+2(x-3) \\
& L(1.001,2.002,3.003)=6.018) \\
& f(1.001,2.002,3.003)=6.018018006 \\
& C \text { error }=000018 \\
& \text { Distance }=0.00374165 \\
& \text { Ceres < } 1 / 200 \text { q distance blu the pts }
\end{aligned}
$$

3. Find Local linear approximation L to fanctum $f(x, y)=\frac{1}{\sqrt{x^{3}}{ }^{3}}$ at $(4,8)$. Compare the ensor in approximating f by L at the pt -(3.92,3.01) with distance blu the pT-s.

Chain rule
if $x=x(t)$ and $y=y(t)$ are differentiable at t and $y \quad z=f(x, y)$ is defferenteable at the pt $(x, y)=(x(t), y(t))$ thin z is duperentable at t and

$$
\frac{d z}{d t}=\frac{\partial x}{\partial x} \cdot \frac{d x}{d t}+\frac{\partial z}{\partial y} \cdot \frac{d y}{d t}
$$

If $x=x(t), y=y(t), z=z(t)$ are differentiable at t and $\omega=f(x, y, z)$ is differentiable at t and

$$
\frac{d w}{d t}=\frac{\partial w}{\partial x} \cdot \frac{d x}{d t}+\frac{\partial w}{\partial y}-\frac{d y}{d t}+\frac{\partial w}{\partial z} \cdot \frac{d_{z}}{d t}
$$

Problems
1 If $x=t^{2}, y=t^{3}$ where $z=x^{8} y$ find $\cdot \frac{d z}{d t}$
\rightarrow

$$
\begin{aligned}
\frac{d z}{d t} & =\frac{\partial z}{\partial x} \cdot \frac{d x}{d t}+\frac{\partial z}{\partial y} \cdot \frac{d y}{d t} \\
& =2 x y \cdot 2 t+x^{2} \cdot 3 t^{2} \\
& =2 x t^{2} \times 3 x^{2 t} t\left(t^{2}\right)^{3} \times 3 t^{2}=4 t^{6}+3 t^{6}=7 t^{6}
\end{aligned}
$$

2. $\omega=\sqrt{x^{2}+y^{2}+z^{2}} \quad x=\operatorname{cosce} \quad y=\operatorname{since} \quad z=\tan c e$.
find $\frac{d w}{d c e}$ when $\theta=\pi / 4 \quad$. (Ans $\sqrt{2}$)
3. $z=\log \left(2 x^{2}+y\right) \quad x=\sqrt{2} \quad y=t^{y 3} \quad$ find $d z / d t$

Chain rule -Ton Partial difberemeration
if $x=x(u, v), y=y(u, v)$ have
$1^{\text {st }}$ order partial derivatives at (u, v) and ' $b z$ is differentiable at (x, y) then z has fast order partial dencuatives at win given by

$$
\begin{aligned}
& \frac{\partial z}{\partial u}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial u}+\frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial v} \\
& \frac{\partial z}{\partial v}=\frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial v}+\frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial v} .
\end{aligned}
$$

Problems
Given $\quad Z=e^{x y} \quad x=20+v \quad y=\frac{u}{v} \quad$ find.
$\frac{\partial z}{\partial u}$ and $\frac{\partial z}{\partial v}$

$$
\begin{aligned}
& \frac{\partial z}{\partial u}=\frac{\partial z}{\partial x} \times \frac{\partial x}{\partial u}+\frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial u}=y e^{x y} \cdot 2+x e^{x y} \cdot \frac{1}{v} \\
& =\frac{2 u}{v} e^{\left(2 \pi n v \frac{u}{v}\right.}+\frac{(u u v)}{v} e^{(2 u n v) \frac{u}{v}} . \\
& =e^{(a u+v) v}\left[\frac{4 u}{v}+1\right] \\
& \frac{\partial z}{\partial v}=\frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial v}+\frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial v}=y e^{x y} 1+x e^{x y} \cdot \frac{u}{v^{2}} \\
& =e^{x y}\left[y-\frac{u x}{v^{2}}\right] \\
& =e^{(2 u+v) \frac{u}{v}}\left[\frac{u}{v}-\frac{u(2 v a v)}{v 2}\right] \text {. } \\
& =e^{(2 v+v) \frac{u}{v}}\left[-\frac{2 u^{2}}{v^{2}}\right]
\end{aligned}
$$

$$
2 . \begin{array}{lll}
2 w=e^{x y z} & x=3 u+v & y=3 u-v \\
\text { find } \quad \frac{\partial w}{\partial v} \text { and } \frac{\partial w}{\partial v} \\
\frac{\partial w}{\partial v}=e^{x y z}[3 u z+3 x z+2 x y v v] \\
\frac{\partial w}{\partial v}=e^{x y z}\left[y z-x z+x y \cdot u^{2}\right]
\end{array}
$$

3. if $\omega=x^{2}+y^{2}-z^{2}$

$$
x=\rho \sin \phi \cos \theta \quad y=\rho \sin \phi \sin \theta \quad z=\rho \cos \phi
$$

- find $\frac{\partial \omega}{\partial \rho}$ and $\frac{\partial \omega}{\partial \omega}$.
$\rightarrow \quad-2 \rho \cos 2 \phi, 0$.

4. $w=x y+y z \quad y=\sin x \quad x=e^{x}$.
find $\frac{d \omega}{d x}$
$\rightarrow \quad x \cdot \sin x+e^{x} \sin x$.
$5 \quad z=3 x^{2} y^{3} \quad x=t^{4} \quad y=t^{3} \quad$ find $\quad \frac{d z}{d t}$
5. $z=\sqrt{1+x-2 x y^{4}} \quad x=\log t, \quad y=2 t \quad$ find $\quad \frac{d z}{d t}$
6. $z=8 x^{2} u-2 x+3 y \quad x=u v \quad u=u+v$ find $\frac{\partial z}{\partial v} d \frac{\partial z}{\partial v}$
7. $\omega=5 \cos (x y)-\sin \left(x_{2}\right) \quad x=y_{t} \quad y=1 \quad z=t \quad$ find $\frac{d \omega}{d t}$
8. find $\frac{\partial f}{\partial v}$ at $u=1, v=-2$ and $\frac{\partial f}{\partial v}$ at $u=1, v=-2$ Where $f=x^{2} y^{2}-x+2 y, x=\sqrt{u}, \quad y=u v^{3}$.

Theorem
of the equation $f(x, y)=c$ defines implicitly as differential -function y x then

$$
\frac{d y}{d x}=\frac{-\frac{\partial f}{\partial x}}{\frac{\partial f}{\partial y}}
$$

$$
\text { if } \quad \frac{\partial f}{\partial u} \neq 0
$$

Pbm
Givers $x^{3}+y^{2} x-3=0$ find $\frac{d y}{d x}$

$$
\begin{gathered}
\frac{d y}{d u}=\frac{-\frac{\partial f}{\partial x}}{\frac{\partial f}{\partial y}} \\
\frac{\partial f}{\partial x}=3 x^{2}+y^{2} \quad \frac{d y}{d x}=-\frac{\left(3 x^{2}+y^{2}\right)}{2 x y .} \\
\frac{\partial f}{\partial y}=2 x y \quad
\end{gathered}
$$

Theorem
if $f(x, y, z)=c \quad$ define z implicitly as a differentiable function of x, y and 'f $\frac{\partial f}{\partial z} \neq 0$

$$
\frac{\left.\frac{\partial z}{\partial x}=\frac{\frac{-\partial f}{\partial x}}{\frac{\partial f}{\partial z}} \quad \& \quad \frac{\partial z}{\partial y}=\frac{-\frac{\partial f}{\partial y}}{\frac{\partial f}{\partial z}}\right\} y \frac{\partial f}{\partial z} \neq 0}{\text { Given } x^{2}+y^{2}+z^{2}=1 \quad \text { Shim find } \frac{\partial z}{\partial x}, \frac{\partial z}{\partial y} .}
$$

$$
\text { at }(2 / 3,1 / 3,2 / 3)
$$

$$
\frac{\partial z}{\partial x}=\frac{\partial}{\partial}--x / 3 \quad \frac{\partial z}{\partial 4}=-4 / z
$$

at the pl. $\quad \frac{\partial x}{\partial x}=-1 \quad \frac{\partial x}{\partial y}=-1$

Maxima and Minima of functions of ${ }^{\circ}$ two variables

1) A function of of two variables is send to heave a relative maximum at $\left(x_{0}, y_{0}\right)$ If there is a disc covered at $\left(x_{0}, y_{0}\right)$ sues that. $f\left(x_{0}, y_{0}\right) \geq f(x, y) \quad$ foin overs points (x, y) in the. dine and absolute max at $\left(x_{0}, y_{0}\right)$ if $f\left(x_{0}, y_{0}\right) \geq-f(x, y)$ for every points (x, y) in the domains of f.
(ii) A function if of tho variables is send to have a relative minimum al $\left(x_{0}, y_{0}\right)$ if $f\left(x_{0}, y_{0}\right) \leq f(x, y)$ for every points (x, y) in the disc and Absobute minimum of $f\left(x_{0}, y_{0}\right) \leqslant f(x, y p$ for every points (x, y) in the domains of f. If If has a relative maximum or relative minimum at $\left(x_{0}, y_{0}\right)$ then we say f has a_{a} rulaleve exlasmum at a point $\left(x_{0}, y_{0}\right)$.
Theorem
If $f(x, y)$ has a relative extaemum at a point $\left(x_{0}, y_{0}\right)$ and f the wi order partial derevalive of f exist al this point and $f_{x}\left(x_{0}, y_{0}\right)=0, f_{y}\left(x_{0}, y_{0}\right)=0$, thin the point $\left(x_{a} y_{0}\right)$ is called a cubical pour t -

Let. $p=f_{x}(x, y), q=f_{y}(x, y)$

$$
r=f_{x x}(x, y) \quad S=f_{x y}(x, y)
$$

$t=-f_{y y}(x, y)$
Tho
Let. $D=r t-S^{2}$ then at a critical pome $\left(x_{0}, y_{0}\right)$

1) If $D>0$ and $r>0$, we say that f has a relative minimum at $\left(x_{0}, y_{0}\right)$.
(1). If $\mathrm{D}>0$ and $\gamma<0$ thin of has a. relative maximum al $\left(x_{0}, y_{0}\right)$
(III). If $D<0$ thess f has a saddle pome at $\left(x_{0}, y_{0}\right)$ ie neither max or minimum.
(v). If $D=0$ thin no conclusion can be made.

Problems
Find the elative extremum of $f(x, y)=3 x^{2}-2 x y$ $+y^{2}-8 y$.

$$
p=\rho_{x}=6 x-2 y \quad q=f_{y}=-2 x+2 y-8 \text {. }
$$

Critical points

$$
\begin{gathered}
\quad f_{x}=0 \quad \text { of } f_{y}=0 \\
6 x-24=0 \text { of }-2 x+2 y-8=0 . \Rightarrow x=2, y=6 \\
r_{2} f_{x x}=6 \quad t=f_{4 y}=2 \quad s=f_{x y}-2 \\
\gamma_{t-s^{2}} \text { at }(2,6)=12-4>0 \quad \gamma=6>0 .
\end{gathered}
$$

f has a relative minimum at $(2,6)$
and menemum value is $f=3(2)^{2}-2(2)(6)+6^{2}-8 \times 6$

$$
z-244
$$

2 Find the exlremum of the function.

$$
f(x, y)=4 x y-x^{4}-y^{4}
$$

$$
\rightarrow \quad \rho_{x}=44-4 y^{3} .
$$

$$
f_{4}=4 x-4 y^{3}
$$

Critical point

$$
x=0 \Rightarrow y=0
$$

$$
x=1 \Rightarrow y=1
$$

$$
\begin{array}{ll}
f_{x}=0, & f_{4}=0 . \\
44-4 x^{3}=0 & 4 x-4 y^{3}=0 . \\
y=x^{9} & 4 x-4 x^{9}=0 \\
& 4 x\left(1-x^{8}\right)=0 \\
& x=0 \quad x^{8}=y \\
& \\
& x=1,-1
\end{array}
$$

$$
x=-1 \Longrightarrow y=-1
$$

$$
\begin{array}{lcc}
v & S \\
f_{x x}=-12 x^{2} & f_{x y}=4 & f_{4 y}=-12 y^{2}
\end{array}
$$

$\left.\begin{array}{|c|c|c|c|c|}\hline \text { Points } & \gamma & t & s & D=r t-s^{2} . \\ \hline(0,0) & 0 & 0 & 4 & -16 \rightarrow \text { saddle port: } 00 \\ \hline(1,1) & -12 & -12 & 4 & 1287 \text { Relative } \\ \hline(-1,-1) & -12 & -12 & 4 & 128\end{array}\right\}$
$(0,0) \rightarrow$ Saddle point-
Relative Maximum at $(1,1) \&(-1,-1)$.
3) $f(x, y)=2 x y-x^{3}-y^{2}$
$\rightarrow(0,0) \rightarrow$ saddle point. , Relative maxima at $(2 / 3,2 / 3$
$4 \quad f(x, y)=4^{2}+x y+4 y+2 x+3$.
5) $f(x, y)=x^{2}+x y-2 y-3 x+1$

Qa $f(x, y)=x^{2}+x y+y^{2}-6 x$.

Absolule Exlaemum
Step 1: Firod the culieal pounts of of that hos wo the molevion of R
Slep 2 riod all boundary poins at when the absolule extaeme can occus.
Steps: Evaluale $f(x, y)$ at these pooms.
Laigess. of these valuse is absolute maximum and smallesi aboutule minimum.

Pbm
Find the absolule monimus and menemum of. $f(x, y)=3 x y-6 x-34+7$ on a closed tarmpulat region witb vertices $(0,0),(3,0)$ and $(0,5)$.
\rightarrow oteps

$$
\begin{array}{lr}
f_{n}=34=6 . & f_{x}=0 \Rightarrow 4=2 \\
f_{4}=3 x-3 . & f_{4}=0 \Rightarrow x=1 .
\end{array}
$$

$$
\text { Conterul }_{\text {(Ras) }}^{p 1} \quad(1,2)
$$

slep: 2

$$
(0,0)
$$

$A B \quad 4=0$

$$
\begin{aligned}
& f=-6 x+7 \\
& P_{x}=-6 \neq 0 \Leftrightarrow N_{0} \text { coutinal } P \text { - }
\end{aligned}
$$

$A C \quad x=0 \quad-34+1 \quad f_{4}=-8 * 0 \Rightarrow$ No Caliceed $p t$
BC

$$
\frac{4-0}{5 \cdot 0}=\frac{x-3}{0-3}
$$

$$
4 x-\frac{5}{3} x+5
$$

$$
\begin{aligned}
& f(x)= 3 x\left(\frac{-5}{3} x+5\right)-6 x-3[-5 / 3 x+5]+7 \\
&=-5 x^{2}+15 x-6 x+5 x-15+7 \\
&=-5 x^{2}+14 x-8 \\
& f_{x}=0 \Rightarrow-10 x+14=0 \quad x=7 / 5 \\
& \Rightarrow 4=-5 / 0 x 1 / 5+5=8 / 3
\end{aligned}
$$

Cubical pt $(7 / 5,8 / 3)$
Step 3

$(x, 4)$	$(1,2)$	$(7 / 5,8 / 3)$	$(0,0)$	$(3,0)$	$(0,5)$
$f(x, y)$	\vdots	$9 / 5$	7	-11	-8

Absolute maxima at $(0,0)$. and absolute minema at (3,0)
2) $f(x, y)=x^{2}-3 y^{2}-2 x+6 y$ where R is the region bounded by the square with vertices. $(0,0),(0,2),(2,2)$, and $(2,0)$

$$
\Rightarrow \quad \begin{aligned}
\quad f_{x}=2 x-2 & f_{x}=0 \Rightarrow x=1 \\
f_{4} & =-64+6
\end{aligned} \quad f_{4}=0 \Rightarrow 4=1
$$

Critical poms $(1,1)$.

$A D \quad x=0$.

$$
\begin{array}{cc}
f=-6 \text { in } & f_{4}=-5 \\
f(y)=-34^{2}+64 & f_{y}=-64+6 \quad f_{4}=0 \Rightarrow=1 \\
& \text { (rilecal pt }(0,1) .
\end{array}
$$

BC $\quad x=2 \quad f(y)=4-3 y^{2}-4+64$

$$
f_{4}=0 \Rightarrow-64+6 \Rightarrow \varphi=1
$$

Crelical point (a,1)
ΔB

$$
\begin{aligned}
& g=0 \quad f(x)=x^{2}-2 x \\
& f_{x}=0 \Rightarrow 2 x-2=0 \quad x=1 \\
& \text { pt } \quad(1,0) .
\end{aligned}
$$

$D C$

$$
\begin{gathered}
f=2 \quad f(x)=x^{2}-12-2 x+12 \\
f_{x}=0 \Rightarrow 2 x-2=0 \quad x=1 \\
\text { pt }(1,2)
\end{gathered}
$$

$$
\therefore \quad .: 0
$$

$(x, 4)$	$(0,0)$	$(2,0)$	$(2,2)$	$(0,2)$	$(1,1)$	$(0,1)$	$(2,1)$	$(1,0)$
$f(x, y)$	0	0	0	0	2	3	3	-1
					-1			

Alascitule- Maximum at $(0,1)$ ot $(2,1)$
Absoluli Menemu at (1,0),$(1,2)$

Madule $\overline{\text { II }}$.
Multivareable Calculus - Integration
Wouble mlegrals
A double mlegral can be evaluated by -lwo suceessive integrations. We evaluatio 1t. W.r.to one varuablel lreating the other vareable as constont) and reduce it to an integral of one vareabe.
ei $\quad \int_{c}^{d} \int_{a}^{b} f(x, y) d x d y=\int_{c}^{d}\left[\int_{a}^{b} f(x, y) d x\right] d y$
Problems

$$
=\int_{a}^{c} \int_{c}^{d} \cdot f(x, y) d y d x .
$$

\downarrow
[Reclongulas region]]

$$
\begin{aligned}
& =\int_{1}^{3}\left[\int_{2}^{4} 40-2 x y d y\right] d x \\
& =\int_{1}^{3}\left[40 y-\frac{2 x y^{2}}{x}\right]_{2}^{4} d x=\int_{1}^{3} 80-12 x d x \\
& \left.=80 x-\frac{12 x^{2}}{2}\right]_{1}^{3}=112
\end{aligned}
$$

Evaluate the double inlegral $\iint_{R} y^{2} x d A$
Over the rectenngle $R=\left\{\left.(x, y)\right|^{R}-3 \leq x \leq 2,0 \leq y \leq 1\right\}$

$$
\Rightarrow \quad=\iint_{R} y^{2} x d x=\int_{-3}^{2} \int_{0}^{1} y^{2} x d y d x .=-5 / 6
$$

Let R be a rectangle defined by the inequalities, $a \leq x \leq b, c \leq y \leq d$, if $f(x, y)$ is Contmuious on this rectangle then,

$$
\iint_{R} f^{P}(x, y) d a=\int_{c}^{d} \int_{a}^{b} f(x, y) d x d y=\int_{a}^{b} \int_{c}^{d} f(x, y) d y d x
$$

Double integral over non rectangular regin
Type 1 Region: it is a region bounded on the left and right by the vertical line $x=a$ and $x=b$ and is bounded below and above by the curves $y_{\hat{A}_{4}}=g_{1}(x) \quad y=g_{2}(x), g_{1}(x) \leq g_{2}(x) \quad a \leq x \leq b$

Since x is fired we draw vertical line. in the legion R at an arbitrary foxed value. The line crosses the boundary of R-lwire. The lower point of the intersection is on the curve $y=g_{1}(x)$ heger pons is on the Curve $y=g_{2}(x)$. These two intersection determines lower and upper limit of y. Imagine move the levine to left and then to legit. left most position where the line insessect the region R is $x=a$ and the regis position in $\quad 1=b$. This determues the limit of x x constant y variable

Type 2 Region
It is a region bounded below and above by the houzontal lines $y=c$ and $y=d$ and bounded on left and regalby the continuous caves $x=h_{1}(y)$ and $x=h_{2}(y) \quad \therefore \quad h_{1}(y) \leqslant b_{2}(y) \quad$ for $c \leqslant y \leqslant d$.

horizontal line in the region R. The line also crosses the boundary twice. the left side is on the cave $x=b_{1}(y)$ and regh!- Side ω oo the curve $x=b_{2}$ y). Move the line from bottom to to p. Pi from, $y=c$ to $u=d$.

$$
y \text {-constonst }, x=\text { vareable }
$$

Problenos
Evaluale $\iint_{R} x y d A, R$ io enclored b/w $y=x / 2, y=\sqrt{x}$ $x=2, \quad x=4$

$$
\rightarrow \quad \begin{array}{|l|l|l|l|}
\hline x=x / 2 & \\
\hline 4 & 0 & 2 & 4 \\
\hline 4 & 0 & 1 & 2 \\
\hline
\end{array}
$$

$$
\begin{aligned}
& y=\sqrt{x} \\
& \begin{array}{|l|l|l|l|}
\hline x & 0 & 1 & 4 \\
\hline y & 0 & 1 & 2 \\
\hline
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \int_{2}^{x \rightarrow} \int_{i / 2}^{4} x y d y d x=\int_{2}^{4} x \frac{y^{2}}{2} \int_{i x / 2}^{\sqrt{x}} d x . \\
& \quad=\int_{2}^{4} \frac{x^{2}}{2}-\frac{x^{3}}{8} d x=\frac{11}{6} .
\end{aligned}
$$

2 Evaluale $\iint_{R} x^{2} d x$. bourded by $y=16 / x, y=x \quad x=8$.

$$
\Rightarrow y=\frac{16}{x} \begin{array}{|l|l|l|l|}
\hline \frac{1}{4} & 2 & 4 & 4 \\
\hline
\end{array}
$$

$$
\dot{y}=x
$$

Type 2
$x \rightarrow 1-4$ to

$$
4 \longrightarrow 1 \text { to } 3
$$

$$
\int_{1}^{3} \int_{1-y}^{y-1}
$$

$$
\begin{aligned}
& \text { 2) } d x d y=\int_{1}^{3}\left[x^{2}-y^{2} x\right]_{1-y}^{y-1} d y \\
& =\int_{1}^{3} 2 y^{2}-2 y^{3} d y=\left[\frac{2 y^{3}}{3}-\frac{2 y^{4}}{4}\right]_{1}^{3}=-\frac{68}{3}
\end{aligned}
$$

4 Use a double integral find the area of region R enclosed b/w a parabola $y=\frac{x^{2}}{2}$ and, A^{4}

$$
\begin{aligned}
& \text { the line } y=2 x \\
& \rightarrow \quad A R \in A=\iint_{R} d A
\end{aligned}
$$

$$
\begin{aligned}
& y=2 x \quad \text { x } x 1012{ }^{2} \\
& y \longrightarrow \frac{x^{2}}{2} \text { to } 2 x \\
& x \rightarrow 0 \text { to } 4 \text {. } \\
& \begin{aligned}
\text { Area: } \int_{0}^{x \rightarrow 0} \int_{x^{2 / 2}}^{40} d y d x=\int_{0}^{2 x}(y)_{x / 2}^{2 x} d x & =\int_{0}^{4} 2 x=\frac{x}{2} d x \\
& =\frac{16}{4}
\end{aligned}
\end{aligned}
$$

Reversing the order of integration
Sometimes the evaluation of a double integral can be simplified by reversing The order of integration.
Rablenos

2. Sketch the region of integration and evaluate The integral $\int_{1}^{2} \int^{4^{2}} d x d y$ by changing this Order of integration. y
\rightarrow Type 2 Region Changes to, Type 1 Region

$1^{\text {st }}$ parl. $4 \rightarrow \sqrt{x}$ to x

$$
x \rightarrow 1 \in 02
$$

Sid $^{\text {Dd }}$ pare $4 \rightarrow \sqrt{x}$ to 2

$$
\begin{aligned}
\iint_{R} d x d y & =\int_{1}^{2} \int_{\sqrt{x}}^{x} d y d x+\left.\int_{2}^{4}\right|_{\delta x} ^{2} d y d x . \\
& =\int_{1}^{2}(4)_{\sqrt{x}}^{x} d x+\int_{2}^{4}(4)_{\sqrt{x}}^{2} d x . \\
& =\int_{1}^{2} x-\sqrt{x}+\int_{2}^{4} 2-\sqrt{x} d x=\left[\frac{x^{2}}{2}-\frac{x^{3 / 2}}{3 / 2}\right]_{1}^{2}+2 x-\frac{x^{3 / 2}}{1 / 2} \\
& =5 / 6 .
\end{aligned}
$$

$$
\text { Volume. }=\iint f^{f}(x y) d A \quad \text { Where } Z=f(x, y)
$$

1) find the volume a. solid bounded. by the cylinder $\quad x^{2}+y^{2}=4 \quad y+z=4 \quad z=0$.

$$
\Rightarrow \quad \begin{array}{rl}
y+z=4 & z=4-y \\
\text { Volume } & =\iint f(x, y) d A \\
& =\iint 4-y d A .
\end{array}
$$

$x^{2}+y^{2}=4$

$$
y \rightarrow-\sqrt{4-x^{2}} \quad \text { to } \sqrt{4-x^{2}} \quad x \rightarrow-2 \text { to } \quad x
$$

$$
\begin{aligned}
& V=\int_{-2}^{2} \int_{-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}} 4 d u d x . \\
& =\int_{-2}^{2}\left[44 \frac{q+\frac{y^{2}}{2}}{1}\right]_{\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}} d x . \\
& =\int_{-2}^{2} 4 \sqrt{4-x^{2}}-\left(\frac{4-1 x^{2}}{/ 2}\right)-\left[-4 \sqrt{4-x^{2}}-\left(\frac{4-x^{x}}{\beta}\right)\right] d p \\
& =\int_{-2}^{2} 8 \sqrt{4-x^{2}} d x=8\left[x / 2 \sqrt{4-x^{2}}+4 / 2 \sin ^{-1}(x / 2)\right]_{-2}^{2} \\
& =8\left[\sqrt{4-\frac{1}{4}}+2 \sin ^{-1}(1)-\left(-\sqrt{4-4}+2 \sin ^{-1}(-1)\right]\right. \\
& =8\left[2 \sin ^{-1}(1)+^{-} 2 x^{-} \sin ^{-1}(1)\right]=328^{-1}(1) \\
& =30 \times \mathrm{N} / 2 \\
& =16 \pi
\end{aligned}
$$

Triple Integrals
A Single integral of a function fix - defined over a finite closed interval on the x-axis, and a double integral of a function $f(x, y)$ is defined over a Piste closed region R urns the x_{y}-plane.
A triple integral of $f(x, y, z)$ over a closed Solid region G in an $x y 3$ - co-ordinale system.

Pros

$$
\text { Volume }=\iiint d V
$$

1 Evaluate $\iiint_{G} 12 x y^{2} z^{3} d v$ over the rectangular blacks G defused by the insequaletuis

$$
\begin{aligned}
& -1 \leq x \leq 2, \quad 0 \leq y \leq 3, \quad 0 \leq z \leq 2 . \\
& \Rightarrow \int_{-1}^{2} \int_{0}^{3} \int_{0}^{2} 12 x y^{2} z^{3} d z d y d x \\
& \left.=\int_{-1}^{2} \int_{0}^{3} 12 x y^{2} \frac{z^{4}}{4} \cdot\right]_{0}^{2} d y d x \\
& \int_{-1}^{2} \int_{0}^{3} 48 x \ddot{y}^{2} d y d x=\int_{-1}^{2} 48 x \frac{y^{3}}{3} \int_{0}^{3} d x \\
& =432 \int_{-1}^{2} x d x \\
& =432\left(\frac{\lambda^{2}}{2}\right]_{-1}^{2}=648 \\
& 2 \int_{0}^{1} \int_{-1}^{y^{2}} \int_{-1}^{z} y z d x d z d y \\
& =\int_{0}^{1} \int_{-1}^{y^{2}}[x y z)_{-1}^{z} d z d y \\
& =\int_{0}^{1} \int_{-1}^{y z}\left(y z^{2}+y z\right) d z d y
\end{aligned}
$$

$$
\begin{aligned}
& \left.\int_{0}^{1} y \frac{z^{3}}{3}+4 \frac{z^{2}}{2}\right]_{-1}^{y^{2}} d y \\
= & \int_{0}^{1} \frac{y^{7}}{3}+\frac{y^{5}}{2}+4 / 3-4 / 2 d y \\
= & \left.\frac{4^{8}}{8 \times 3}+\frac{46}{6 \times 2}+\frac{y^{2}}{2 \times 3}-\frac{y^{3}}{2 \times 3}\right]_{0}^{1}=1 / 24 .
\end{aligned}
$$

3. Use a triple mlegral to find the volume of the solid within the cylinder $x^{2}+y^{2}=9$ and between the planes $z=1$ and $x+z=9$.
\rightarrow Volume $=\iiint d v$
Here $z \longrightarrow 01$ to $5-x=5-r \cos c e$.

Sub $x=r \cos \theta$

$$
d x d u=r d r d \infty
$$

$$
q=r \sin c e .
$$

$\gamma \rightarrow 0$ to 3 Q \rightarrow to 2π
$\therefore V=\int_{0}^{2 \pi} \int_{0}^{3} \int_{1}^{5-r \cos \theta} d \xi \cdot r d r d \theta$.

$$
\begin{aligned}
& \int_{0}^{2 \pi} \int_{0}^{3}[3]^{5-r \cos \theta} \cdot r d r d \theta \\
& \int_{0}^{2 \pi} \int_{0}^{3}[5-r \cos \theta-1] r d r d r \\
& \int_{0}^{2 \pi} \int_{0}^{3}[4-r \cos \theta] r d r d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{3} 4 r-r^{2} \cos \theta d r d u \\
& =\int_{0}^{2 \pi} 18-9 \cos \theta d \theta \\
& =\frac{4 \pi}{2}-\left.\frac{r^{3}}{3} \cos \theta\right|_{0} ^{3} d \theta \\
& =18 \theta-9 \sin \theta \cdot]_{0}^{2 \pi}=36 \pi .
\end{aligned}
$$

4: Evaluate $\iint x \int_{z} d v$ when G is the sold is the first octant that is bounded. by the parabolic cylinder $z=3-x^{2}$ and the planes $Z=0, \quad 4=x$ and $4=0$
$\rightarrow \quad$ Limits

$$
\begin{aligned}
& Z \rightarrow 0 \text { to } 3-x^{2} \\
& a \rightarrow 0 \text { to } x \\
& x \rightarrow 0 \text { to } \sqrt{3} \quad\left[\begin{array}{l}
a=0,4=x \Rightarrow x=0 \\
2=0 \\
z=3-x^{2} \Rightarrow\left[\begin{array}{l}
x^{2}=3 \\
x=\sqrt{3}
\end{array}\right]
\end{array}\right.
\end{aligned}
$$

$$
\iiint_{O} x y z d y=\int_{0}^{\sqrt{3}} \int_{0}^{x} \int_{0}^{3-x^{2}} x y z d z d y d x
$$

$$
\begin{aligned}
& \int_{0}^{\sqrt{3}} \int_{0}^{x} x y \frac{3^{3}}{2} \int_{0}^{3-x^{2}} d y d x \\
& \frac{1}{2} \int_{0}^{\sqrt{3}} \int_{0}^{x} x y\left(3-x^{2}\right)^{2} d u d x \\
& \frac{1}{2} \int_{0}^{\sqrt{3}} \int_{0}^{x} x y^{\prime}\left(9-6 x^{2}+x^{4}\right) d y d x \text {. } \\
& \frac{1}{2} \int_{0}^{\sqrt{3}} \int_{0}^{x} 9 x y-6 x^{3} y+x^{5} y_{1} d y d x \\
& \int_{0}^{\sqrt{3}}\left(9 x \frac{4^{2}}{2}-6 x^{3} \frac{4^{2}}{2}+x^{5} \frac{y^{2}}{2}\right)_{0}^{x} d x \\
& 1 / 4 \int_{0}^{\sqrt{3}} 9 x^{3}-6 x^{5}+x^{7} d x=\frac{27}{32} \text {. } \\
& 5 \text { Use a triple integral; to find } \\
& \text { the volume of the solid is the " } \\
& \text { first Octet bounded by the } \\
& \text { Coordinate planes and the plane } \\
& 3 x+6 y+4 z=12 \\
& \rightarrow \quad V=\iiint d v . \\
& Z=\frac{12-3 x-64}{4} \\
& z=0 \Rightarrow \frac{12-3 x-64}{4}=0 \Rightarrow y=\frac{4-x}{2} . \\
& z=0,4=0 \Rightarrow \frac{4-x}{2}=0 \Rightarrow x=4 \text {. }
\end{aligned}
$$

Lemats

$$
\begin{aligned}
& Z \rightarrow 0 \text { to } \frac{12-3 x-64}{4} \\
& 4 \rightarrow 0 \text { to } \frac{4-x}{2} \\
& x — 0=4 \\
& V=\int_{0}^{4} \int_{0}^{\frac{4-x}{2}} \int_{0}^{\frac{12-3 x-64}{4}} d z d 4 d x \\
& =\int_{0}^{4} \int_{0}^{\frac{4-x}{2}} \cdot \frac{12-3 x-6 y}{4} d y d x \text {. } \\
& \frac{1}{4} \int_{0}^{4} \int_{0}^{\frac{4-x}{2}} 12-3 x-64 d y d x \\
& =\frac{1}{4} \int_{0}^{4} 124-3 x 4-\frac{64^{2}}{2} \int_{0}^{\frac{4-x}{2}} d x \\
& =\frac{1}{4} \int_{0}^{4} 12 \frac{(4-x)}{2}-3 x \frac{(4-x)}{2}-\frac{6\left(\frac{4-x)^{2}}{2}\right.}{2} \\
& =\frac{1}{4} \int_{0}^{4} 24-6 x-6 x+\frac{3 x^{2}}{2}-3\left(4-a x+\frac{x^{2}}{4}\right) d x \\
& \frac{1}{4} \int_{0}^{4} 12-6 x+\frac{3 x^{2}}{4} d x \\
& \frac{1}{4}\left(12 x-\frac{6 x^{2}}{2}+\frac{3 x^{3}}{3 x^{4}}\right)_{0}^{4}=4
\end{aligned}
$$

Mass of Lamina
if $\rho(x, y)$ i. a conternuous density function of a lamina is the plane regin R, then mass if lamina 10°

$$
m=\iint_{R}^{0} \rho(x, y) d x
$$

Pbs

1) Find the mass of the region that is bounded by the line $y=2 x$ and the parabda $y=x^{2}$ If the density function is $\rho(x, y)=x$.

$$
\rightarrow
$$

$$
\begin{aligned}
& y \rightarrow x^{2} \text { to } 2 x \\
& x \rightarrow 0 \text { to } 2
\end{aligned}
$$

$$
M=\int_{0}^{2} \int_{x^{2}}^{2 x} f(x, y) d n
$$

$$
4=2 x
$$

$$
x^{2}=2 x
$$

$$
x^{2}-2 x=0
$$

$$
x=0, x=2
$$

$$
\begin{aligned}
& =\int_{0}^{2} \int_{x^{2}}^{2 x} x d y d x=\int_{0}^{2}[x y]_{x^{2}}^{2 x} d y \\
& \left.\quad=\int_{0}^{2} 2 x^{2}-x^{3} d x=2 \frac{x^{3}}{3}-\frac{x_{0}}{4}\right]_{0}^{2}=4 / 3
\end{aligned}
$$

centre if mass (\bar{x}, \bar{y})

Phon
Centre of mass of Lamina

$$
\begin{aligned}
& \bar{x}=\frac{M_{y}}{M}, \quad \bar{y}=\frac{M_{x}}{M} \\
& M_{x}=\iint_{R} y \rho(x, y) d A \\
& M_{y}=\iint_{R} x \rho(x, y) d A
\end{aligned}
$$

1) Find the mass and center of mass of the lamina bounded by $y=2 / x, y=0 \quad x=1, x=2$ with density $f=k x^{2}$.

$x \rightarrow 1$ to 2

$$
\begin{aligned}
x \rightarrow 1 \text { to } & = \\
M & =\int_{1}^{2} \int_{0}^{2 \sqrt{x}} f(x, y) d A \\
& =\int_{1}^{2} \int_{0}^{2 / x} k x^{2} d y d x
\end{aligned}
$$

$$
\begin{aligned}
& \int_{1}^{2} \int_{0}^{21 x} k x^{2} d y d x \\
&\left.\int_{1}^{2} k x^{2} y\right]_{0}^{2 / x} d x \\
& \int_{1}^{2} 2 k x d x=\left.2 k \frac{x^{2}}{2}\right|_{1} ^{2} \\
&=3 k
\end{aligned}
$$

$$
\begin{aligned}
M_{x} & =\iint_{R} y \rho(x, y) d A \\
& =\int_{1}^{2} \int_{0}^{2 / x} y \cdot k x^{2} d y d x \\
& =\left.\int_{1}^{2} k x^{2} \cdot \frac{y^{2}}{2}\right|_{0} ^{2 / x} d x \\
& =\int_{1}^{2} 2 k d x \\
& =2 k(x)_{1}^{2}=2 k \\
M_{y} & =\int_{R} x \rho(x, y) d A \\
& =\int_{1}^{2} \int_{0}^{2 / x} x k x^{2} d y d x=\int_{1}^{2} k x^{3}[a]^{4 / x} d x \\
& =\int_{1}^{2} 2 k x^{2} d x \\
\bar{x} & =\frac{M_{y}}{M}=\frac{14}{3} k=\frac{14}{3 k}=2 k\left(\frac{x^{3}}{3}\right)^{2} \\
\bar{y} & \left.=\frac{M_{x}}{M}=\frac{2 k}{3 k}=2 / 3\right)=\frac{14}{3}
\end{aligned}
$$

Double integrals

$$
\begin{array}{ll}
\text { Area }=\iint d A \\
\text { Volume }=\iint z d A
\end{array} \quad \begin{aligned}
& d A=d x d y
\end{aligned}
$$

Mass of Lamina $M=\iint \rho(x, y) d x$

$$
\rho \rightarrow \text { density }
$$

Cenire y mass $=(\bar{x}, \bar{y})$

$$
\begin{aligned}
\bar{x} & =\frac{M_{y}}{M} \quad \bar{y}=\frac{M_{x}}{M} \\
M_{y} & =\iint x \rho(x, y) d A \\
M_{x} & =\iint y \rho(x, y) d A
\end{aligned}
$$

Triple integrals

$$
\begin{aligned}
\text { Volume } & =\iint d v \\
& d v=d x d y d z
\end{aligned}
$$

Polar co-ordinates.
Ciscle $\quad x^{2}+y^{2}=x^{2}$
Peet $x=r \cos \theta, \quad y=r \sin \theta, d A=r d r d c e$
$\gamma \rightarrow 0$ to $r . \quad\left(\epsilon g: \begin{array}{l}x^{2}+y^{2}=4 \\ r \rightarrow 0 \leqslant 02\end{array}\right)$
$0 \rightarrow 0$ to 2π.

Type 1 Region
$x \rightarrow$ consiont, $y \rightarrow$ vareable

Type 2-Region
$x \rightarrow$ Vareable, y constant
(6) Definition:

An infinite series is an expression that can be written in the form $\sum_{k=1}^{\infty} u_{k}=u_{1}+u_{2}+u_{3}+\cdots+u_{k}+\cdots$
The numbers $u_{1}, u_{2}, u_{3} \ldots$ are called the terms of the series.

Eg:- consider the decimal 0.3333....
This can be viewed as the infinite series

$$
0.3+0.03+0.003 t
$$

A Sequence of partial sums of a series $\sum_{n=1}^{\infty} a_{n}$ is defined as the sequence $\left\{S_{n}\right\}$ where

$$
s_{n}=a_{1}+a_{2}+\cdots+a_{1}, \quad n=1,2 ; 3 \cdots
$$

eQ:- consider the series $\quad 0.3+0.03+0.003+\cdots$
then $S_{1}=0.3$

$$
\begin{align*}
S_{2} & =0.3+0.03 \\
S_{3} & =0.3+0.03+0.003 \\
S_{n} & =0.3+0.03+0.003+\cdots+0.000 \tag{03}\\
& =\frac{3}{10}+\frac{3}{10^{2}}+\frac{3}{10^{3}}+\cdots+\frac{3}{10^{n}}
\end{align*}
$$

"onvergence of infinite sores
(2) Let $\left\{S_{n}\right\}$ be the sequence of partial sums of the Series $u_{1}+u_{2}+u_{3}+\cdots+u_{k}+\cdots$ If the sequence $\left\{S_{n}\right\}$ convergences to a limit s, then the series 18) Said to converge to s, and s is called the Sum of the Series. It is denoted by $S=\sum_{k=1}^{\infty} u_{k}$ of the Sequence of portal sums diverges, then the series is said to diverge A divergent Series has no sum.

Eg: Determine whether the series $1-1+1-1+\cdots$, converges or diverges. If it converses, find the sum Here $S_{1}=1$

$$
\begin{aligned}
& S_{2}=1-1=0 \\
& S_{3}=1-1+1=1 \\
& S_{4}=1-1+1-1=0
\end{aligned}
$$

Thus the Sequence of partial sum is $1,0,1,0,1,0$. This is a divergent sequence.
Hence the given Series us also divergent and

Consequently has no sum
Geometric Series
Infinite series of the sum form $\sum_{k=0}^{\infty} a_{r}^{k}=a+a r t$ $(a \neq 0)$
$a r^{2}+\cdots+a r^{k}+\cdots$. is called geometric series. The number ' r ' is called the ratio for the seies Eg: $* 1+2+4+8+\cdots+2^{k}+\cdots$. Here $a=1 \& r=2$

$$
* \frac{1}{2}-\frac{1}{4}+\frac{1}{8}+\cdots+(-1)^{k+1} \frac{1}{2^{k}}+\cdots \cdots
$$

Thereorem
A geometric series $\sum_{k=0}^{\infty} a r^{k}=a+a i+\cdots+a r^{k}+\cdots$ $(a \neq 0)$ converges if $|\gamma|<1$ and diverges if $|\gamma| \geq 1$. If the series converges, then the Sum is $\sum_{K=0}^{\infty} a r^{k}=\frac{a}{1-r}$

* Determine Whether the series converges, and if so find its Sum
(1) $\sum_{k=0}^{\infty} \frac{5}{4^{k}}$

$$
\sum_{k=0}^{\infty} \frac{5}{4^{k}}=5+\frac{5}{4}+\frac{5}{4^{2}}+\cdots+\frac{5}{4^{n}}+\cdots \text { Geometac } \text { seances }
$$

(ir) Since $1.1=\left|\frac{1}{4}\right|<1$, the givers 6.3 b 1000 and sum is $\frac{a}{1 . r}=\frac{1}{1-1 / 4}-\frac{90}{3}$
(2) Prod the rational number represented by gupuet decimal

$$
0.18478 \text { +184 }
$$

$$
\rightarrow 0.184184184 \quad=0.784+0.000784+1
$$

$$
0000007244
$$

$$
=\frac{784}{10^{5}}+\frac{785}{10^{6}}+\frac{184}{10^{9}}+\cdots
$$

Thy is a geomolare Series with $a=\frac{784}{10^{3}}, \frac{11}{16}$ Here |re|" The pries cornergont.

$$
\text { Sum }=\frac{9}{1-2}-\frac{0.789}{1-0.001}=\frac{784}{.999}=\frac{784}{999}
$$

* find ar values of x for which the Series

$$
3-\frac{3 x}{2}+\frac{3 x^{2}}{4}-\frac{3 x^{3}}{8}+\cdots+\frac{3(-1)^{k}}{2} x^{k}+\cdots
$$

converges and find the sum of tho sexes for those valueds of x.
\rightarrow This is a geometric series with $a=3$, gro
I. converges if $\left|\frac{-x}{2}\right|<1$, or equivalently when $|x|<2$ When the series conuriges its sum is,

$$
\sum_{k=0}^{\infty} 3\left(\frac{-x}{2}\right)^{k}=\frac{3}{1-\left(\frac{-x}{2}\right)}=\frac{6}{2+x}
$$

Harmonic Series
An infinite series of the form $\sum_{k=1}^{\infty} \frac{1}{k}$ is called Harmonic $1+\frac{1}{2}+\frac{1}{3}+\cdots \cdots$
Soles. This Series is divergent

- Convergence Tests

I Compárison Test

- Theorem :- Lot $\sum_{k=1}^{\infty} a_{k}$ and $\sum_{k=1}^{\infty} b_{k}$ be series roth nonnegative terms and Suppose that

$$
\begin{aligned}
& \text { m negative terms and suppose } \\
& a_{1} \leq b_{1}, a_{2} \leq b_{2}, a_{3} \leq b_{3}, \cdots, b_{k}, \ldots \ldots
\end{aligned}
$$

a) If $\sum b_{k}$ converges, then $\sum a_{k}$ also converges
b) If $\sum a_{k}$ diverges, then $\sum b_{k}$ also diverges
p-Series
An infinite Series $\sum_{k=1}^{\infty} \frac{1}{k^{p}}=1+\frac{1}{2^{p}}+\frac{1}{3^{p}}+$ (6) converges if $p>1$ and ducrages if $0<p \leqslant 1$

Problem

* Use the comparison lest to determine whethon the following Series converge or diverge

1) $\sum_{k=1}^{\infty} \cdot \frac{1}{\sqrt{k}-\frac{1}{2}}$
\rightarrow consider the series $\sum_{k=1}^{\infty} \frac{1}{\sqrt{k}}$ which is deverics for $k=1,2 \ldots . .$.

Hence by comparison test, The green Series i: divergent.
2) $\sum_{k=1}^{\infty} \frac{1}{2 k^{2}+k}$
\rightarrow Wee bake $\sum_{k=1}^{\infty} \frac{1}{2 k^{2}}=\frac{1}{2} \sum_{k=1}^{\infty} \frac{1}{k^{2}}$ and

$$
\sum_{k=1}^{\infty} \frac{1}{k^{2}} \text { is } a \text { convergent } \quad p \text {-series }(p=2)
$$

$$
\text { Also } \frac{1}{2 k^{2}+k}<\frac{1}{2 k^{2}} \text { for } k=1,2 \ldots
$$

Hence by comparison test the given series is convergent.
Limit comparison Test
Let Σa_{k} and Σb_{k} be - Series with positive terms and suppose that $S=\lim _{k \rightarrow \infty} \frac{a_{k}}{b_{k}}$ If ρ is finite and $\rho>0$, then the series both converge or both deere

* use limit Comparison test determine whether the Seris is convergent or dicoogent

$$
\text { 1) } \sum_{k=1}^{\infty} \frac{1}{\sqrt{k}+1}
$$

Let $a_{k}=\frac{1}{\sqrt{k}+1} \quad \xi b_{k}=\frac{1}{\sqrt{k}} \quad\left(\begin{array}{c}\sum b_{k} \text { is a divergent } \\ \text { Series })\end{array}\right.$

$$
\rho=\lim _{k \rightarrow \infty} \frac{a_{k}}{b_{k}}=\lim _{k \rightarrow \infty} \frac{\sqrt{k}}{\sqrt{k}+1}=\lim _{k \rightarrow \infty} \frac{1}{1+\frac{1}{\sqrt{k}}}
$$

$=1$
\& is Pinite and positive. Therefore by Limit compaoson test the given series diverges
(24)
2) $\sum_{k=1}^{\infty} \frac{1}{2 k^{2}+k}=\sum_{k=1}^{\infty} \frac{1}{2 k^{2}\left(1+\frac{1}{2 k}\right)}$

Let $\sum b_{k}=\sum \frac{1}{2 k^{2}}$ which is Converges
(6) $\rho=\lim _{k \rightarrow \infty} \frac{a_{k}}{b k}=\lim _{k \rightarrow \infty} \frac{1}{1+1 / a k}=1$ finite
positive \therefore by limit comparison test, the Guin series is convergent.

Limit comparison lest
Let $\sum a_{5}$ and $\sum b_{k}$ be Series with positive terms and suppose that $\rho=\lim _{k \rightarrow \infty} \frac{a_{k}}{b_{k}}$
If ρ is finite and $\rho>0$, then the series both converge or both diverge

* Use limit comparison test determine whether ri Series is convergent or divergent

1) $\sum_{k=1}^{\infty} \frac{1}{\sqrt{k}+1}$

$$
\left\lvert\, \begin{aligned}
& \frac{1}{\sqrt{k+1}}=\frac{1}{\sqrt{k}\left(1+\frac{1}{\sqrt{k}}\right.} \\
& k^{\prime 2} \rightarrow 1 / 2<1 \quad \mathrm{PSe}
\end{aligned}\right.
$$

Let $a_{k}=\frac{1}{\sqrt{k}+1} \quad \xi b_{k}=\frac{1}{\sqrt{k}}$ $\left(\begin{array}{c}\sum b_{k} k \\ \text { diverge } \\ s\end{array}\right.$

$$
\begin{aligned}
& \rho=\lim _{k \rightarrow \infty} \frac{a_{k}}{b_{k}}=\lim _{k \rightarrow \infty} \frac{\sqrt{k}}{\sqrt{k+1}}=\lim _{k \rightarrow \infty} \frac{1}{1+} \\
& \text { finite and }+10 \text {. }
\end{aligned}
$$

\& is finite and tue. Therefore by $=1 \mathrm{~m}, \mathrm{t}$ comp

Test the gicen soxies decorqes.
2) $\sum_{n=1}^{\infty} \frac{1}{2 k^{2}+k}-\sum_{k=1}^{\infty} \frac{1}{2 k^{a}\left[1+\frac{1}{2 k}\right]}$

Let $\sum b_{k}=\sum \frac{1}{2 k^{2}}$ which is convereent

$$
\rho=\lim _{k \rightarrow \infty} \frac{a_{k}}{b_{k}}=\lim _{k \rightarrow \infty} \frac{1}{1+1 / 22}=1 \text {.finito } \xi
$$

posituve. By lemit Comporison fest, the gevenseries is consergent.

$$
\text { (3) } \begin{aligned}
\sum_{k=1}^{\infty} & \frac{3 k^{3}-2 k^{2}+4}{k^{7}-k^{3}+2} \\
& =\sum_{k=1}^{\infty} \frac{3 k^{3}\left[1-\frac{2}{3 k}+\frac{4}{3 k^{3}}\right]}{k^{7}\left[1-\frac{1}{k^{4}}+\frac{2}{k^{7}}\right]}
\end{aligned}
$$

Take $b_{k}=\frac{3 k^{3}}{k^{7}}=\frac{3}{k^{4}}$

$$
\begin{aligned}
\sum_{k=1}^{\infty} b_{k}=\sum_{k=1}^{\infty} \frac{3}{k^{7}} \text { converges } & (p \text { series) } \\
S=\lim _{k \rightarrow \infty} \frac{a_{k}}{b_{k}} & =\lim _{k \rightarrow \infty} \frac{1-2 / 3 k^{4}+\frac{4}{3 k^{2}}}{1-\frac{1}{k^{4}}+\frac{2}{k^{7}}} \\
& =1 \text { Sinite } \xi \text { Non zex(}
\end{aligned}
$$

(26)
\therefore By limit comparison test, the given series is converigan

Test the concerrgece of the series $\sum_{k=1}^{\infty} \frac{1}{3^{k}+11}$
(9) $\frac{1}{3^{k}+11}<\frac{1}{3^{k}}$
$\frac{1}{3^{k}}$ is a geometric Series $a=\frac{1}{3} \xi r=\frac{1}{3}<1$

$$
\therefore \sum_{k=1}^{\infty} \frac{1}{3^{k}} \text { is convergent. }
$$

Hence by comparison test $\sum_{k=1}^{\infty} \frac{1}{3^{k}+11}$ in also convergent.

$$
\text { * } \begin{aligned}
& \sum_{k=1}^{\infty} \frac{1}{\sqrt[3]{8 k^{9}-3 k}} \begin{aligned}
a_{k}=\frac{1}{\sqrt[3]{8 k^{2}-3 k}} & =\frac{1}{\left(8 k^{2}-3 k\right)^{1 / 3}} \\
& =\frac{1}{\left(8 k^{2}\right)^{2 / 3}\left[1-\frac{3 k}{8 k^{2}}\right]^{1 / 3}} \\
& =\frac{1}{8^{1 / 3} k^{2 / 3}\left(1-\frac{3}{8 k}\right)} \\
& =\frac{1}{2 k^{2 / 3}\left(1-\frac{3}{8 k}\right)}
\end{aligned} \\
& \text { Take } b=-1
\end{aligned}
$$

Take $b_{k}=\frac{1}{2 k^{2 / 3}}\left[\sum_{\text {with }} b_{k}\right.$ is a Mercies derbent

$$
S=\lim _{k \rightarrow \infty} \frac{a_{k}}{b_{k}}=\lim _{k \rightarrow \infty} \frac{1}{\left(1-\frac{3}{8 k}\right)^{1 / 3}}=1 \text { finite } \hat{y}
$$

Posdice. Hence $\sum a_{n}$ is also divergent by limit comparison test.

$$
\begin{aligned}
& \text { * } \sum_{n=1}^{\infty} \frac{1}{(2 k+3)^{17}} \\
& a_{k}=\frac{1}{(2 k+3)^{17}}=\frac{1}{1 k^{17}\left(2+\frac{3}{k}\right)^{17}} \\
& \text { Take } b_{k}=\frac{1}{h^{11}} \Rightarrow \sum b_{k} \text { converges } \\
& \begin{aligned}
S=\lim _{k \rightarrow \infty} \frac{a_{k}}{b_{k}} & =\lim _{k \rightarrow \infty} \frac{1}{(2+3 / k)^{17}} \\
& =1, \text { incite }
\end{aligned} \\
& =\frac{1}{2^{17}} \text {, } \text { finite and tue }
\end{aligned}
$$

\therefore By limit comparison lest the green Saris $\sum a_{n}$ is also convergent.
L. Hospital's Rule

If $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}$ takes the indeterminate forms $\left(\frac{0}{0}, \frac{\infty}{\infty}\right)$
and $f(x) ; g(x)$ have. derccuatices of all order then, $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f(x)}{g^{\prime}(x)}$ proweded the limit exists.

Again it $\frac{f^{\prime}(x)}{g^{\prime}(x)}$ takes indetermmate forms, them $\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}=\lim _{x \rightarrow a} \frac{f^{\prime \prime}(x)}{g^{\prime \prime}(x)}$ proulded the limits
(V) exist.fenctely.

Eg:- $\operatorname{lit}_{x \rightarrow 2} \frac{x^{2}-4}{x-2}$

$$
\Rightarrow \lim _{x \rightarrow 2} \frac{\frac{d}{d x}\left(x^{2}-4\right)}{\frac{d}{d x}(x-2)}=\lim _{x \rightarrow 2} \frac{2 x}{1}=4
$$

A liter

$$
\operatorname{Lit}_{x \rightarrow 2} \frac{x^{2}-4}{x-2}=\operatorname{lt}_{x \rightarrow 2}(x+0)(x-2)=2+2=4
$$

Note

* Comparison test only apples to Series roth nonnegative terms.

Ratio Test:-
Let $\sum h_{n}$ be a series with postiche terms and sur that, $\rho=\lim _{k \rightarrow \infty} \frac{u_{k+1}}{u_{k}}$.
(i) if $\rho<i$, the Series converges \int Try this test whirs u_{k} involves station or $k^{\text {th }}$ power]
(ii) if $\rho>1$ or $\rho=\infty$ the series diverges
(iii) if $\rho=1$, the series may converge or denmeg So that anothor test hurst be hied.
(i) Test whether the series conuerge or dicerse

$$
\begin{aligned}
& \sum_{k=1}^{\infty} \frac{1}{k!} \\
& \begin{array}{l}
S=\lim _{k \rightarrow \infty} \frac{u_{k+1}}{u_{k}}=\lim _{k \rightarrow \infty} \frac{\frac{1}{(k+1)!}}{1 / k!}
\end{array}=\lim _{k \rightarrow \infty} \frac{k!}{(k+1)!} \\
&=\lim _{k \rightarrow \infty} \frac{k!}{(k+1) k!} \\
&=\lim _{k \rightarrow \infty} \frac{1}{k+1}=0<1
\end{aligned}
$$

Hence the geum series is concergent by rato Test.
(i) $\sum_{k_{n=1}}^{\infty} \frac{k}{2^{k}}$

$$
\begin{aligned}
& \sum_{k=1} \frac{1}{2^{k}} \\
& \begin{array}{l}
\lim \\
\lim _{k \rightarrow \infty} \frac{k^{k+1}}{\frac{2^{k+1}}{k / 2^{k}}}=\lim _{k \rightarrow \infty} \frac{k+1}{k} \frac{2^{k}}{2^{k+1}}=\frac{1}{2} \lim _{k \rightarrow \infty} \frac{k+1}{k} \\
=\frac{1}{2} \lim _{k \rightarrow \infty} \frac{k(1+1 / k)}{k}
\end{array}
\end{aligned}
$$

$$
=\frac{1}{2} \lim _{k \rightarrow \infty} \frac{k(1+1 / k)}{k}
$$

$$
=1 / 2<1
$$

Guven Series is conuergent.
(6ii)

$$
\begin{aligned}
& \sum_{k=1}^{\infty} \frac{k^{k}}{k!b^{\prime}} \\
\rho & =\lim _{k \rightarrow \infty} \frac{(k+1)^{k+1}}{(k+1)!}, \frac{k!}{k^{k}} \\
& =\lim _{k \rightarrow \infty} \frac{(k+1)^{k+1}}{k^{k}} \frac{k b}{(k+1)^{k} b}
\end{aligned}
$$

$$
\begin{aligned}
& =\lim _{k \rightarrow \infty} \frac{(k+1)^{k}(k+1)}{k^{k}(k+1)} \\
& =\lim _{k \rightarrow \infty}\left(\frac{k+1}{k}\right)^{k}=\lim _{k \rightarrow \infty}(1+1 / k)^{k} \\
& \quad=e>1
\end{aligned}
$$

\therefore the Given Series is divergent.
(Lu)

$$
\begin{aligned}
& \sum_{k=3}^{\infty} \frac{(2 k)!}{4^{k}} \\
& \lim _{k \rightarrow \infty} \frac{(2(k+1))!}{4^{k+1}} \frac{4^{k}}{(2 k)!} \\
& \lim _{k \rightarrow \infty} \frac{(2 k+2)!}{(2 k)!} \frac{1}{4} \\
&= \lim _{k \rightarrow \infty} \frac{(2 k+2)(2 k+1)(2 k)!}{(2 k)!} \\
&= \therefore \text { The series diverges }
\end{aligned}
$$

(4)

$$
\left.\begin{array}{rl}
& \sum_{k=1}^{\infty} \frac{1}{2 k-1} \\
= & \lim _{k \rightarrow \infty} \frac{1}{2(k-1)-1}, 2 k-1 \\
& =\lim _{k \rightarrow \infty} \frac{1}{2 k-1}, 2 k-1
\end{array}=\lim _{k \rightarrow \infty} \frac{2 k\left(1-\frac{1}{2 k}\right)}{2 k\left(1+\frac{1}{2 x}\right)}\right)=1 \text { Test fail } \quad l
$$

* $\sum_{k=17 k}^{\infty} \frac{1}{14}$

$$
\begin{aligned}
s & =\lim _{k \rightarrow \infty} \frac{1}{1 z(k+1)} \text { k } k \\
& =\lim _{k \rightarrow \infty} \frac{k}{k+1}=\lim _{k \rightarrow \infty} \frac{k}{k(1+1 / k)}=1
\end{aligned}
$$

Test fail.

$$
\begin{aligned}
* \quad \sum_{k=1}^{\infty} & \frac{1}{2 k-1} \\
f & =\lim _{k \rightarrow \infty} \frac{1}{2(k+1)-1} 2 k-1 \\
& =\lim _{k \rightarrow \infty} \frac{2 k-1}{2 k+1}=\lim _{k \rightarrow \infty} \frac{2 k(1-1 / 2 k)}{2 k\left(1+\frac{1}{2 k}\right)}=1
\end{aligned}
$$

Test fail.
We have $\quad 2 k-1<2 k$.

$$
\frac{1}{2 k-1}>\frac{1}{2 k}
$$

Take $\sum_{B} b_{K}=\sum \frac{1}{2 \hbar}=\frac{1}{2} \sum \frac{1}{k}$ diverges
\therefore By comparison test $\sum_{k_{01}}^{\infty} \frac{1}{2 k-1}$ also duresges use the rato test the to determine whether the saves converges. If the dent is inconclusive then Say 30
*

6

$$
\begin{aligned}
& \sum_{k=1}^{\infty} \frac{99^{k}}{k!} \\
& S=\lim _{k \rightarrow \infty} \frac{a_{k}+1}{a_{k}}=\lim _{k \rightarrow \infty} \frac{(99)^{k+1}}{(k+1)!} \frac{k!}{(99)^{k}} \\
&=\lim _{k \rightarrow \infty} \frac{99}{k+1}=0<1
\end{aligned}
$$

Hence the seies is concergend by rabo dest.

$$
\text { * } \begin{aligned}
& \sum_{k=1}^{\infty} \frac{4^{k}}{k^{2}} \\
& \rho=\lim _{k \rightarrow \infty} \frac{4^{k+1}}{(k+1)^{2}} \cdot \frac{k^{2}}{4^{k}} \\
&=\lim _{k \rightarrow \infty} 4\left(\frac{k^{2}}{k^{2}\left(1+\frac{1}{k}\right)^{2}}\right) \\
&=\lim _{k \rightarrow \infty} \frac{4}{\left(1+\frac{1}{k}\right)^{2}}=4>1
\end{aligned}
$$

\therefore Series dicurges by rabotest.

* $\sum_{k=1}^{\infty} \frac{k!}{k^{99}}$

$$
\rho=\lim _{k \rightarrow \infty} \frac{(k+1)!}{(k+1)^{99}} \cdot \frac{k^{99}}{k!}
$$

$=\infty$, thence decerengent

$$
\begin{align*}
\because & \sum_{k=1}^{\infty} \frac{k}{k^{2}+1} \\
\rho & =\lim _{k \rightarrow \infty} \frac{k+1}{(k+1)^{2}+1} \times \frac{k^{2}+1}{k} \tag{17}\\
= & \lim _{k \rightarrow \infty} \frac{k^{\prime}\left(1+v_{k}\right)}{k^{2}+2 k+2} \frac{k^{2}+1}{k} \\
& =1 \quad \text { Test fail }
\end{align*}
$$

The root test
Let $\sum u_{k}$ be a serves w th positive terms and Suppose that $\rho=\lim _{k \rightarrow \infty} k \sqrt{u_{k}}=\lim _{k \rightarrow \infty}\left(u_{k}\right)^{1 / k}$
(a) If $\rho<1$, the series conucoges
(b) If $\rho>1$ or $\delta=+\infty$, the series diverges
(e) If $\rho=1$, the Series may converges or diverge so that another nest must be bred.
(Try this test when u_{k} incurve $k^{\text {th }}$ power)

* Use the root test to determine whether the sores conner es. If the test
(1) $\sum_{k=1}^{\infty}\left(\frac{k}{100}\right)^{k}$

$$
\begin{aligned}
\rho & =\lim _{k \rightarrow \infty}\left(\left(\frac{k}{100}\right)^{k}\right)^{1 / k}(34) \\
& =\lim _{k \rightarrow \infty} \frac{k}{100} \\
& =\infty .
\end{aligned}
$$

\therefore The Series is diverges by Rood lest
(2)

$$
\begin{aligned}
& \sum_{k=1}^{\infty}\left(\frac{3 k+2}{2 k-1}\right)^{k} \\
& \rho=\lim _{k \rightarrow \infty}\left[\left(\left[\frac{3 k+2}{2 k-1}\right]^{n}\right]^{1 / k}\right. \\
& =\lim _{k \rightarrow \infty} \frac{3 k+2}{2 k-1}=\lim _{k \rightarrow 2 \infty} \frac{k\left(3+\frac{2}{k}\right)}{k(2-1 / k)}= \\
& \therefore \quad \text { The series }
\end{aligned}
$$

\therefore The series is delores.
(3)

$$
\begin{aligned}
& \sum_{k=1}^{\infty} \frac{1}{(\ln (k+1))^{k k}} \\
& S=\lim _{k \rightarrow \infty}\left[\frac{1}{(\ln (k+1))^{1}}\right]^{1 / k} \\
& =\lim _{k \rightarrow \infty} \frac{1}{\ln (k+1)}
\end{aligned}
$$

$=0<1$, the Saris converges
(4)

$$
\begin{aligned}
& \sum_{k=1}^{\infty}\left(1-e^{-k}\right)^{k} \\
& S=\lim _{k \rightarrow \infty}\left(\left(1-e^{-k}\right)^{k}\right)^{1 / k}=\lim _{k \rightarrow \infty} 1-e^{-k} \\
& =1 \text {, inconclusive }
\end{aligned}
$$

find the general term of tho serves and use the ratio der to Show that the series converges
(1) $1+\frac{1 \cdot 2}{1 \cdot 3}+\frac{1 \cdot 2 \cdot 3}{1 \cdot 3 \cdot 5}+\frac{1 \cdot 2 \cdot 3 \cdot 4}{1 \cdot 3 \cdot 5 \cdot 7}+\cdots \cdot$

General term is,$\frac{1 \cdot 2 \cdot 3 \cdot 4 \cdots \cdot n}{1 \cdot 3 \cdot 5 \cdot 7 \cdots(2 n-1)}$

$$
\begin{aligned}
\sum_{k=1}^{\infty} \frac{1 \cdot 2 \ldots(k)}{1 \cdot 3 \cdot 5 \cdots(2 k-1)} & =\sum_{k=1}^{\infty} \frac{k!}{1 \cdot 3 \cdot(2 k-1)} \cdot \frac{2 \cdot 4 \cdot 6 \cdot 8 \cdot 2 k}{2 \cdot 4 \cdot 6 \cdot 8 \cdots 2 k} \\
& =\sum_{k=1}^{\infty} \frac{k!2 \cdot 4 \cdot 6 \cdot 8 \cdots 2 k}{2 k 1 \cdot 2 \cdot 3 \cdot 4 \cdot \cdots(2 k-1) 2 k}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{k=1}^{\infty} \frac{k!2 \cdot 46 \cdot 8 \cdots 2 k}{(2 k)!} \\
& =\sum_{k=1}^{\infty} \frac{k!_{0} 2^{k}[1 \cdot 2 \cdot 3 \cdots k]}{(2 k)!} \\
& =\sum_{k=1}^{\infty} \frac{\left(k l_{0}\right)^{2} 2^{k}}{(2 k)!}
\end{aligned}
$$

$$
\begin{aligned}
\rho & =\lim _{k \rightarrow \infty} \frac{a_{k+1}}{a_{k}} \\
& =\lim _{k \rightarrow \infty} \frac{((k+1) b)^{2} 2^{k+1} \times \frac{2 k!}{(2(k+1))!}}{(k!)^{2} Q^{k}} \quad n n_{b}=n(n-1)! \\
& =\lim _{k \rightarrow \infty} 2 \cdot\left(\frac{(k+1)!}{k!} \frac{2 k!}{(2 k+2)!} 2\right. \\
& =\lim _{k \rightarrow \infty} 2(k+1)^{2} \frac{2 k!}{(2 k+2)(2 k+1) 2 k!}
\end{aligned}
$$

$$
\begin{aligned}
& =\lim _{k \rightarrow \infty} \frac{2\left(k^{2}+2 k+1\right)}{4 k^{2}+6 k+2} \\
& =2 \times \frac{1}{4} \\
& =\frac{1}{2}<1 \quad \text { converges }
\end{aligned}
$$

$$
\lim _{k \rightarrow 2)} \frac{2(k+1)^{2}}{(2 k-2)(2 k+1)}=\lim _{k \rightarrow \infty} \frac{2\left(k^{2}+2 k+1\right)^{2}}{4 k^{2}+6 k+2}
$$

D)
use any method to determine whether the series converges.
(1) $\sum_{k=1}^{\infty} \frac{+\cos ^{8} k}{k!}$
we have $\cos ^{2} k \leq 1$

$$
\frac{7 \cos ^{2} k}{k!} \leq \frac{7}{k!}
$$

consider the Sars $\sum_{k=1}^{\infty} \frac{\sum_{k!}^{\infty}}{k_{1}}=\sum_{k=1}^{\infty} \frac{1}{k j}=\sum_{k=1}^{\infty} b_{k}$

$$
\begin{aligned}
8=\lim _{k \rightarrow \infty} \frac{b_{k+1}}{b_{k}} & =\lim _{k \rightarrow \infty} \frac{7}{(k+1)!} \frac{k!}{7} \\
& =\lim _{k \rightarrow \infty} \frac{1}{k+1} \\
& =0<1
\end{aligned}
$$

\sum bu converges by rato test
Hence by comparison test $\sum a_{n}=\sum_{k=1}^{\infty} \frac{-60^{2} k}{n!}$ also conc

* $\sum_{k=1}^{\infty} k^{50} e^{-k}$

$$
\left.\left.\begin{array}{rl}
f & =\lim _{k \rightarrow \infty} \frac{a_{k+1}}{a_{k}} \\
& =\lim _{k \rightarrow \infty} \frac{(k+1)^{50} e^{-(k+1)}}{n^{50} e^{-k}}
\end{array}=\lim _{k \rightarrow \infty}\left(\frac{k+1}{k}\right)^{50-1} e^{50-1}{ }^{1 / n \rightarrow \infty}\left(\frac{k(1+1 / k}{k}\right)\right)^{k}\right)
$$

3 ratodest the serios is convergent.

$$
\begin{aligned}
& \text { * } \sum_{k=1}^{\infty} \frac{\left[\left[\frac{\pi(k+1)]}{k_{n}^{k+1}}\right]_{1 / k}^{k}, k n\left(a_{k}\right)\right.}{k} \\
& \rho=\lim _{k \rightarrow \infty}\left(a_{k}\right)^{1 / k} \\
& \left.=\lim _{k \rightarrow \infty}\left(\frac{\pi(k+1)}{k}\right)^{k} 1 / k\right) \\
& 1 / k \\
& =\lim _{k \rightarrow \infty} \frac{\pi(k+1)}{k} \frac{1}{k^{1 / k}} \quad \lim _{k \rightarrow \infty} k^{1 / k}=1 \\
& =\pi>1 \quad \therefore \text { Disergent Seres } \\
& \therefore \sum_{k=1}^{\infty} \frac{1}{5 k^{2}-2 k} \text { cgt. } \\
& k^{2} \geq k \\
& \lim _{k=1} \sum_{k=1}^{\infty} \frac{1}{5 k^{2}-2 k} \\
& -k^{2} \leq-k \\
& -2 k^{2} \leq-2 k \\
& 5 k^{2}-2 k^{2} \leq 5 k^{2}-2 k \\
& 3 k^{2} \leq 5 k^{2}-2 k \\
& \frac{1}{3 k^{2}} \geq \frac{1}{5 k^{2}-2 k} \\
& \sum_{k=1}^{\infty} \frac{1}{3 k^{2}} 184 \\
& * \sum_{k=1}^{\infty} \frac{\tan ^{-1} k}{k^{2}} \\
& b_{k}=\frac{1}{k^{2}} . \quad \sum_{k=1}^{\infty} \frac{1}{k^{2}} \quad \text { is } \operatorname{cgs}^{4} \\
& \lim _{k \rightarrow \infty} \frac{\tan ^{-1} k}{k^{2}} \times k^{2} \\
& \lim _{k \rightarrow \infty} \tan ^{-1} k=\tan ^{-1} \alpha \pi / 2 \text { funite cos) }
\end{aligned}
$$

$$
k \sum_{k=1}^{\infty} \frac{2 k^{2}+1}{2 k^{83}-1}
$$

$$
2 k^{2}+1 \geq 2 k^{2}
$$

(v) $2 k^{86}-1 \leq 2 k^{8 / 3}$
(v) $\frac{2 k^{2}+1}{2 k^{8 k}-1} \geq \frac{2 k^{2}}{2 k^{8 / 3}}$

$$
\frac{2 k^{2}+1}{2 k^{86}-1} \geq \frac{1}{k^{2}} \frac{0}{3}+1 s^{2} \text { divergmil }
$$

Hence $\sum_{k=2}^{\infty} \frac{2 k^{2}+1}{2 k^{8 / 3}-1}$ welivergent
Note .
Let $\sum a_{k}$ and $\sum b_{k}$ be Series with + we terms.
(a) If $\lim _{k \rightarrow 0}\left(a_{k} b_{k}\right)=0$ and $\sum b_{k}$ converge, then $\sum a_{k}$
(b) If $\lim _{k \rightarrow \infty}\left(\left.a_{k}\right|_{k}\right)=\infty$ and $\sum b_{k}$ diucoges, then $\sum b a$

* $\sum_{k=1}^{\infty} \frac{\ln k}{k} \quad a_{n}=\frac{\ln k}{k}$
let $b_{k}=\frac{1}{k}$
$\sum_{k=1}^{\infty} b_{k}=\sum_{k=1}^{\infty} \frac{1}{k}$ which is $\operatorname{dgs}(P=1)$

$$
\begin{aligned}
\lim _{k \rightarrow \infty} \frac{a_{k s}}{b_{k}}=\lim _{k \rightarrow \infty} \frac{\frac{\ln k}{k}}{1 / k} & =\lim _{k \rightarrow \infty} \frac{\ln k}{k} \times \frac{k}{1} \\
& =\lim _{k \rightarrow \infty} \ln k=\infty
\end{aligned}
$$

$\therefore \therefore b_{k}$ diverges then $\sum_{m=1}^{\infty} \frac{\ln k}{k} n d g t$.

$$
\begin{aligned}
& \sum_{k=1}^{\infty} \frac{2 k^{2}+1}{2 k^{83}-1} \\
& a_{k}=\frac{2 k^{2}+1}{28 k^{8 / 3}-1}=\frac{2 k^{2}\left[1+\frac{1}{2 k^{2}}\right]}{2 k^{8 / 3}\left[1-\frac{1}{2 k^{8 b 3}}\right]}=\frac{1}{k^{2 / 3}} \frac{\left[1+\frac{1}{2 k^{2}}\right]}{\left[1-\frac{1}{\left.2 k^{8 / 3}\right]}\right.}
\end{aligned}
$$

$$
\begin{equation*}
b_{k}=\frac{1}{k^{2 / 3}} \tag{23}
\end{equation*}
$$

$\sum_{k=1}^{\infty} b_{k} \cos$ by p series . Since $p=2 / 3<1$

$$
\begin{aligned}
\lim _{k \rightarrow \infty} \frac{a_{k}}{b_{k}} & =\lim _{k \rightarrow \infty} \frac{1 / k^{2 / 3}\left[1+1 / 2 k^{2}\right]}{k^{2 / 3} 3\left(1-1 / 2 k^{8 / 3}\right]} \\
& =1 \text { finite and }>0
\end{aligned}
$$

Hence the gcuen saris' \$ convergent by limit divergent
comparounontent.
Alternating Series
A series in which these the toms are Alternate posture and negative is called an Alternating Series.

$$
\begin{aligned}
\text { Eq } & \sum_{k=1}^{\infty}(-1)^{k+1} \frac{1}{k}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5} \cdots \\
& \sum_{k=1}^{\infty}(-1)^{k} \frac{1}{k}=-1+\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}+\cdots
\end{aligned}
$$

In general, an actunating sores has one of the following two forms;

$$
\begin{aligned}
& \sum_{k=1}^{\infty}(-1)^{k+1} a_{k}=a_{1}-a_{2}+a_{3}-a_{4}+\cdots \\
& \sum_{k=1}^{\infty}(-1)^{k} a_{k}=-a_{1}+a_{2}-a_{3}+a_{4}-\cdots
\end{aligned}
$$

(v) Where a_{k} 's are assumed to be positive in both cast

Absolute Convergence
4 series $\sum_{k=1}^{\infty} u_{k}=u_{1}+u_{2}+u_{3}+\cdots+u_{k}+\cdots+15$
Sack to converge absolutely if the series of absolut.

$$
\sum_{k=1}^{\infty}\left|u_{k}\right|=\left|u_{1}\right|+\left|u_{2}\right|+\left|u_{3}\right|+\cdots+\left|u_{k}\right|+\cdots
$$

Converges and is said to diverge absolutely if th serus of absolute values diceorges.

EG:- * Determine Whether the following Series convert absolutely.

$$
\begin{aligned}
& \text { (a) } 1-\frac{1}{2}-\frac{1}{2^{2}}+\frac{1}{2^{3}}+\frac{1}{2^{4}}-\frac{1}{2^{5}} \\
& \sum_{b_{21}}^{\infty}\left|u_{k}\right|=1+\frac{1}{2}+\frac{1}{2^{2}}+\frac{1}{2^{3}}+\cdots . \text { which is a }^{2} \mid
\end{aligned}
$$

Convergent geometric Series. Hence the given Series is convergent absolutely.

$$
\begin{aligned}
& * 1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5} \cdots \\
& \sum_{k=1}^{\infty}\left|u_{k}\right|=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots
\end{aligned}
$$

which is harmonic series. The absolute clue is a divergent Hemic series. Hence it is diverges absolutely.

Theorem
Of the series $\sum_{k=1}^{\infty}\left|u_{k}\right|=\left|u_{1}\right|+\left|u_{2}\right|+\left|u_{3}\right|+\cdots+\left|u_{k}\right|+\cdots$ converges, then so does the series.

$$
\begin{aligned}
& \sum_{k=1}^{\infty} u_{k}=u_{1}+u_{2}+u_{3}+\cdots \cdot+u_{k}+\cdots \cdot
\end{aligned}
$$

conditional convergence
An infinite series $\sum a_{n}$ is convergent conditionally wife $\sum n_{n}$ is convergent but its absolute tate

- Serves $\left|\sum a_{n}\right|$ is divergent.

EG:- Consider the Series

$$
\begin{equation*}
1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots(-1)^{k+1} \frac{1}{k}+ \tag{1}
\end{equation*}
$$

which is a conditionally convergent series. Because is absolute clue is the divergent Harmonic Series

$$
\begin{equation*}
1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots+\frac{1}{k}+ \tag{2}
\end{equation*}
$$

However, series (1) Converges, since H is the alter noting

Harmonic series, and Series (2) diverges, since it Constant times the divergent Harmonic Series: Thus (1) is a condilonally convergent series.
(v) problems
(1) Determine whether the Series converges absolutely concreveges conditionally.

$$
\sum_{k=1}^{\infty} \frac{\cos k}{k^{2}}
$$

We have $|\cos k| \leq 1$

$$
\frac{|\cos k|}{k^{2}} \leq \frac{1}{k^{2}}
$$

Series of absolute coalues conernige by the comparison test. Thus the green series convenes absolutely and heme concoiscs.
((2)) $\sum_{k=1}^{\infty}(-1)^{k+1} \frac{k+3}{k(k+1)}$
Guin series is apo absolutely convergent ib,

$$
\sum_{k=1}^{\infty}\left|(-1)^{k+1} \frac{k+3}{k(k+1)}\right| \text { is conemiogan }
$$

$$
\left.\sum_{k=1}^{\infty}(-1)^{k+i} \frac{k+3}{k(k+1)} \right\rvert\,=\sum_{k=1}^{\infty} \frac{k+3}{k(k+1)}
$$

Let $b_{k}=\frac{1}{k}$, then $\sum b_{k}=\sum \frac{1}{k}$ which is adevergent Series with $p=1$. and $a_{k}=\sum_{k=1}^{\infty} \frac{k+3}{k(k+1)}$

$$
\begin{aligned}
s=\lim _{k \rightarrow \infty} \frac{a_{k}}{b k} & =\lim _{k \rightarrow \infty} \frac{\frac{k+3}{\not x(k+1)}}{k x} \\
& =\lim _{k \rightarrow \infty} \frac{k\left(1+\frac{3}{k}\right)}{k\left(1+\frac{1}{k}\right)}=1
\end{aligned}
$$

Here ρ is finite and $\rho>0$. Hence. $\sum_{k_{21}}^{\infty} \frac{k+3}{k(k+1)}$ is
convergent or divergent. Since $\sum b_{k}$ is divergence, $\sum_{k_{21}}^{\infty} \frac{k+3}{k(k+1)}$ is deucrgent.

From
(1) $\sum_{K_{71}}^{\infty}\left|a_{k}\right|$ is divergent
or $\sum a_{k}$ is abblutely divergent.
Ratio Test for absolute Convergence
Let $\sum U_{k}$ be a series with non zero terms and Suppose that. $\rho=\lim _{k \rightarrow \infty} \frac{\left|u_{k+1}\right|}{\left|u_{k}\right|}$
(a) If $\mathrm{s}<1$ then the series $\Sigma 4_{k}$ converges absolutely and \therefore converges.
(b) If $\rho>1$ or $\rho=\infty$ then the series sundiverges
(c) if $s=1$, no conclusion about conucogence.
(a) $\sum_{k=1}^{\infty} \frac{(-1)^{k} \alpha^{k}}{k!}$

Taking the absolute cate of the general term u_{s}, her
Obtain

$$
\left|u_{k}\right|=\left|(-1)^{k} 2^{k}\right|=\frac{2^{k}}{k!}
$$

Thus

$$
\begin{aligned}
s=\lim _{k \rightarrow \infty} \frac{\left|u_{k+1}\right|}{\left|u_{k}\right|} & =\lim _{k \rightarrow \infty} \frac{2^{k+1}}{(k+1)!} \times \frac{k!}{2^{k}} \\
& =2 \lim _{k \rightarrow \infty} \frac{1}{k+1} \\
& =0<1
\end{aligned}
$$

Since $s<1$ which implies that the series convey Converges.
(b)

$$
\begin{aligned}
& \sum_{k=1}^{\infty} \frac{(-1)^{k}(2 k-1)!}{3^{k}} \\
& \left|u_{k}\right|=\left|\frac{W_{k}^{\infty}(-1)^{k}(2 k-1)!}{3^{k}}\right|=\frac{(2 k-1)!}{3^{k}} \\
& \rho=\lim _{k \rightarrow \infty} \frac{\left|u_{k+1}\right|}{\left|u_{k}\right|}=\lim _{k \rightarrow \infty} \frac{(2(k+1)-1) \mid)^{k} \times \frac{3^{k}}{3^{k+1}}(2 k-1)}{\left(u_{k}\right.} \\
& =\lim _{k \rightarrow \infty} \frac{(2 n+1)!}{3} \frac{1}{(2 k-1)!} \\
& =\lim _{k \rightarrow \infty} \frac{(2 k+1) 2 k(2 k-1)!1}{3} \frac{(2 k-1)!}{}
\end{aligned}
$$

$$
=\frac{1}{3} \lim _{k \rightarrow \infty} 2 k(2 k+1)=\infty
$$

Which implies that the series diverges.
(c)

$$
\begin{align*}
& \sum_{k=1}^{\infty} \frac{(-1)^{k} k^{5}}{e^{k}} \\
& \left|u_{k}\right|=\left|\operatorname{buc}_{=1}^{\infty}(-1)^{k} \frac{k^{5}}{e^{k}}\right|=\frac{k^{5}}{e^{k}} \tag{29}\\
& \text { Thus } \rho=\lim _{k \rightarrow \infty} \frac{\left|u_{k+1}\right|}{\left|u_{k}\right|}=\lim _{k \rightarrow \infty} \frac{(k+1)^{5}}{e^{k+1}} \times \frac{e^{k}}{k^{5}} \\
& =\lim _{k \rightarrow \infty} \frac{k^{5}\left(1+\frac{1}{k}\right)^{5} x}{k^{5} e} . \\
& =\frac{1}{e} \lim _{k \rightarrow \infty}\left(1+\frac{1}{k}\right)^{5} \\
& =\frac{1}{e}<1
\end{align*}
$$

Since $\rho<1$ which implies that the series converges hence absolutely converges. And therefore Converges.
(d) $\sum_{k=1}^{\infty} \frac{k \cos k \pi}{k^{2}+1}$

We have $|\cos k \pi|=\left|(-1)^{k}\right|=1$

$$
\begin{aligned}
& \therefore\left|\sum_{k=1}^{\infty} \frac{k \cos k \pi}{k^{2}+1}\right|=\sum_{k=1}^{\infty} \\
& \left|\sum_{k=1}^{\infty} \frac{k \cos k \pi}{k^{2}+1}\right|=\sum_{k=1}^{\infty} \frac{k}{k^{2}+1} \rightarrow(1) \text { Let } a_{k}=\frac{k}{k^{2}+1}
\end{aligned}
$$

choose $b_{n}=\frac{1}{n}$
Now $\sum b_{k}$ is devergend with psaces $P .1$

$$
\begin{aligned}
\rho=\lim _{k \rightarrow \infty)} \frac{a_{k}}{b_{k}} & =\lim _{k \rightarrow \infty} \frac{k}{\frac{k}{k+1}} \times 1 \\
& =\lim _{k \rightarrow \infty} \frac{k}{K_{k}} \times k^{2} \\
& =\lim _{k \rightarrow \infty} \frac{k}{k^{2}+1} \times k^{2}\left(1+\frac{1}{k^{2}}\right) \\
& =\lim _{k \rightarrow \infty} \frac{k^{k}}{k^{2}\left(1+\frac{1}{k^{2}}\right)} \\
& =\lim _{k \rightarrow \alpha \infty} \frac{1}{1+\frac{1}{k}} \text { foncies }
\end{aligned}
$$

Hence the gued serus is ced or decurgent togethe. Since bris diserigent

$$
\therefore \sum_{k=1}^{\infty}\left|\frac{k \cos k \pi}{k^{2}+1}\right| \text { is duceigent }
$$

\therefore Given series is not absolutely convergent.
(w)

$$
\begin{aligned}
& \sum_{k=1}^{\infty}(-1)^{k+1} \frac{3^{k}}{k^{2}} \\
& \left|c_{k}\right|=\left|(-1)^{k+1} \frac{3^{k}}{k^{2}}\right|=\frac{3^{k}}{k^{2}}
\end{aligned}
$$

$$
\therefore \begin{align*}
\because \text { Thus } \rho=\lim _{k \rightarrow \infty} \frac{\left|u_{k+1}\right|}{\left|u_{k}\right|} & =\lim _{k \rightarrow \infty} \frac{3^{k-1}}{(k+1)^{2}} \times \frac{k^{2}}{3^{k}} \\
& \left.=\lim _{k \rightarrow \infty} \frac{3}{k^{2}\left(1+\frac{1}{k^{2}}\right.}\right) \tag{31}\\
& =3>1
\end{align*}
$$

\therefore Thus the gruen
sules is devergent. Hence not absodulely Concer gent.
Leibniotz's Test on Alternating Serees
The aliernation senus $\sum(-1)^{n-1} u_{n}=u_{1}-u_{2}+u_{3}-u_{4} \ldots$. .

Pboms 11 . Examine the convergence of the serees

$$
:-y_{2}+y_{3}-y_{6} \ldots
$$

$$
u_{n}=y_{n} \quad u_{n+1}=1 / n+1
$$

(1) $u_{n}>u_{n+1} \forall n$.
(2) $\lim _{n \rightarrow \infty} u_{n}=0$
\therefore By hechnita's test the serees gt
-2) Examine the gence of the serves

$$
\begin{aligned}
& 2-3 / 2+4 / 3-5 / 4 \cdots \\
& u_{n}=\frac{n+1}{n} \quad u_{n+1}=\frac{n+2}{n+1} . \\
& u_{n}-u_{n+1}=\frac{n+1}{n}-\frac{n+2}{n+1}=\frac{(n+1)^{2}-n(n+2)}{n(n+1)}=\frac{1}{n(n+1)}>0 \text { nn }
\end{aligned}
$$

$\therefore u_{n}>u_{n+1}$. (v) $\lim _{n \rightarrow \infty} u_{n}=1 \neq 0$. Sereis not cogt
3)

$$
\begin{aligned}
& \frac{1}{2^{3}}-\frac{1}{3^{3}}(1+2)+\frac{1}{4^{3}}(1+2+3) \cdots \\
& \begin{aligned}
& u_{n}=\frac{1}{(2+)^{3}}[1+2+\cdots+n]= n(0+n) \\
& 2(n+1)^{3}
\end{aligned} \\
& =\frac{n}{2\left(n+1^{2}\right.}
\end{aligned}
$$

$$
\begin{aligned}
-u_{n+1} & =\frac{n+1}{\partial(n+2)^{2}} \cdot \\
& =\frac{n}{2(n+1)^{2}}-\frac{n+1}{2(n+1)^{2}} \\
& =\frac{n(n+2)^{2}-(n+1)(n+)^{2}}{2(n+1)^{2}(n+2)^{2}} \\
& =\frac{n\left[n^{2}+4 n+4\right]-(n+1)\left[n^{2}+2\right.}{2(n+1)^{2}(n+2)^{2}} \\
& =\frac{n^{2}+n-1}{2(n+n)^{2}(0+2)^{2}}>0 \quad \forall n
\end{aligned}
$$

$u_{n}>u_{n+1} \quad \forall 0$
(1) $\lim _{n \rightarrow \infty} \ln _{n \rightarrow \infty}=\lim _{n \rightarrow \infty} \frac{n}{2(n+1)^{2}}=0$
\therefore B4 heibnitz's Flest Serues cgs

Module IIL

- Tourer. Series

Periodic fermetion
The relation $f(x+T)=F(x)$ for all real x Function. The Smallest positive number T - Sob which this relation holols is called the period of $P(x)$.

B T si a period of $f(x)$ thin

$$
\begin{aligned}
& T \text { so a period o } \quad f(x)=f(x+m T)=\text { period }=f(x+2 T)=\text { are periodic - Function } \\
& f(x)=f(x+T)=f(x)
\end{aligned}
$$

Eg: $\cos x, \cos 2 x, \cos 3 x$ are periodic Function Periods $2 \pi, \pi, \frac{2 \pi}{3}$ respectively. $\operatorname{Sin} x, \cos x, \operatorname{cosec} x, \& \sec x$ are. periodic functions with period 2π $\tan x$ \& $\cot x$ are periodic functions with period
π.
The Functions $\sin n x+\cos n x$ are periodic with period $\frac{2 \pi}{n}$.
Even and Odd Functions
A function $f(x)$ is said to be
even if $f(-x)=f(x)$
Eg: $\quad x^{2}, \cos x, \sin ^{2} x,|x|$
The graph of an even function
Symmetrical about y axis.
A function $f(x)$ in 0 sail to be odd 4 . $f(-x) \cdot$ ti s A function $-(x)$ in asa odd firmitions.

The graph of an odd function is symme reentry the origin.
The even fum x even fum even fum.

$$
\begin{aligned}
& \text { odd " } x \text { odd " } " \text { even } \\
& \text { odd " } x \text { even } "=\text { odd function. } \\
& \int_{-c}^{c} f(x) d x=0 \quad \text { if } f(x) \text { io odd. } \\
& \int_{-c}^{c} f(x) d x=2 \int_{0}^{c} f(x) d x, \quad 1 \quad+P(x) \text { io even. } \\
& \int e^{a x} \cos b x d x=\frac{e^{a x}}{a^{2}+b^{2}}[a \cos b x+b \sin b x] \\
& \int e^{a x \sin b x d x}=\frac{e^{a x}}{a^{2}+b^{2}}[a \sin b x-b \cos b x] \\
& \int_{0}^{\infty} e^{a r} \sin b x d x=\frac{b}{a^{2}+b^{2}} \text { also } \int_{\theta^{2}}^{\infty} e^{-a x} \cos b x d x=\frac{a}{a^{2}+b^{2}} \\
& \operatorname{OCH}-3=\sin A \cos B+\cos A E \cdot 0 B \quad \sin A \cos B=Y_{2}[\sin (A+1 B) y \\
& \operatorname{Sib}(A B)=\operatorname{Sin} A \cos B \cdot \cos A \sin E \\
& \cos (A+B)=\cos A \cos 13-\sin A \sin B \\
& \cos (A-B)=\cos A \cos B+\sin A \sin B \\
& \sin (A \operatorname{B}) \\
& \cos 7 \sin R=\left[\begin{array}{l}
1 \\
=[\sin (x) 3)]
\end{array}\right. \\
& \operatorname{\omega os} A \cos B=U_{2} / \operatorname{arsc} A
\end{aligned}
$$

$\operatorname{Sin} A \sin E$
Orthogonality Property y Sine d cosme tumotur?

$$
\begin{aligned}
& \int_{t_{0}}^{t_{0}+T} \sin (m \omega t) \sin (n \omega t) d t=0 \quad m \neq n, \quad m=n=0 \\
&=T / 2 \quad m=n \neq 0 \\
& \int_{t_{0}+T} \begin{aligned}
\cos (m \omega t) \cos (n \omega t) d t & =0 \quad m \neq n \\
& =T / 2 \quad m=n \neq a
\end{aligned} \\
&=T \quad m=n=0
\end{aligned}
$$ Hoar Angmandera Senas

Wheve al an bo are foumer coefficents
Where

$$
\begin{align*}
& a_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) d x \\
& a_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x d x \tag{1}\\
& b_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin n x d x
\end{align*}
$$

THuse foumalos are called Euler's -ormulus. if the volienal $(0,2 \pi)$

$$
\begin{aligned}
& a_{0}=\frac{1}{\pi} \int_{0}^{2 \pi} f(x) d x \\
& a_{n}=\frac{1}{\pi} \int_{0}^{2 \pi} f(x) \cos n x d x \\
& b_{n}=\frac{1}{\pi} \int_{0}^{2 \pi} f(x) \sin n x d x
\end{aligned}
$$

- $0 f(x):$ odd in $(-1, \pi)$

$$
\begin{aligned}
& a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) d x=0 \\
& b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x d x=\frac{2}{\pi} \int_{0}^{\pi} p(x)(d e n x d x \\
& b_{n}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \sin n(x) \rightarrow \\
& \infty
\end{aligned}
$$

$f(x)=\sum_{n=1}^{\infty} b_{n} \sin n x d x$ Where.

$$
b_{n}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \sin m x d x .
$$

$f(x)$ even

$$
\begin{aligned}
a_{0} & =21_{\pi} \int_{0}^{\pi} f(x) d x \\
a_{n} & =\frac{2}{\pi} \int_{0}^{\pi} f(x) \cos n x d x \\
b_{n} & =0 \\
P(x) \quad & =\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos n x
\end{aligned}
$$

Pros
Food the -buries series of the function.

$$
f(x)=x \text { in the interval }-\pi<x<\pi \text {. }
$$

An:- Poxpice serves representation of $f(x)$

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos n x+b_{n} \sin n x .
$$

Here $\quad f(x)=x \quad f(-x)=-x=-f(x)$
$f(x)$ odd.

$$
\begin{aligned}
& f(x)=\sum_{n=1}^{\infty} b_{n} \sin n x d a \quad\left[\because a_{0}=a_{n}=0 .\right. \\
& b_{n}=2 / \pi \int_{0}^{\pi} f(x) \sin n x d x \\
& =2 / \pi \int_{0}^{\pi} x \sin n x d x \\
& =\frac{2}{\pi}\left[x x-\frac{\cos \frac{n x}{n}}{11}-1 x-\frac{\sin n x}{n^{2}}\right]_{0}^{\pi} \\
& =2 / \pi\left[-\pi \frac{\cos n}{n}+0-(0-0)\right] \\
& \therefore-2 \frac{\cos n \pi}{n}=-\frac{2}{n}(-1)^{n} \frac{2(-1)^{2}+1}{n} \\
& \therefore f(x)=\sum_{n=1}^{\infty} 2 / n(-1)^{n+1} \sin n x d x . \\
& =\int 2 \sin x-2 / 0 \sin 2 x+2 / 3 \sin 3 x-2 / 6 \sin 4 x
\end{aligned}
$$

$$
=2\left[\sin x-\frac{\sin 2 x}{2}+\sin \frac{3 x}{3}-\frac{\sin 4 x}{6}\right]
$$

Trod the Tounity serai's of $f(x)$ given by

$$
f(x)=\left\{\begin{array}{rl}
-k & -\pi<x<0 \\
k & 0<x<0
\end{array} \quad\right. \text { Hence deduce that }
$$

A: Fouries Series $\& f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos n x+b_{n} \sin n x$.

$$
\begin{aligned}
& a_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) d x \\
&=\frac{1}{\pi}\left[\int_{-\pi}^{0}-k d x+\int_{0}^{\pi} k d x\right] \\
&=\frac{1}{\pi}\left[[-k x]_{-\pi}^{0}+[k x]_{0}^{\pi}\right] \\
& a_{0}=0
\end{aligned}
$$

$$
a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x d x
$$

$$
\left.=\frac{1}{\pi}\left[\int_{-\pi}^{0}-k \cos n x d x+\int_{0}^{\pi} k \cos n x d x\right]\right]
$$

$$
\left.\left.=\frac{1}{\pi}\left[-k x \frac{\sin n x}{n}\right]_{-\pi}^{0}+\frac{k \sin n x}{n}\right]_{0}^{\pi}\right]
$$

$$
=\frac{1}{\pi}[0 .]
$$

$$
a_{n}=0
$$

$$
b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin n x d x
$$

$$
=\frac{1}{\pi}\left[\int_{-\pi}^{0}-k \sin n x d x+\int_{0}^{\pi} k \sin n x d x \cdot\right]
$$

$$
\left.\left.=\frac{1}{\pi}\left[k \frac{k \cos n x}{n}\right]_{-\pi}^{0}-k \frac{k \cos n x}{n} \cdot\right]_{0}^{\pi}\right]
$$

$$
=\frac{1}{k}\left[\left(\frac{k}{n}-\frac{k}{n} \cos n \pi\right)-\left(\frac{k}{n} \cos n \frac{\pi}{n}-\frac{k}{n}\right)\right]
$$

$$
\because \frac{1}{\pi}\left[\frac{2 k}{n}-\frac{2 k}{n}(-1)^{n}\right]=\frac{2 k}{n \pi}\left(1-(-1)^{n+1}\right)
$$

$$
f(x)=\sum_{n=1}^{\infty} b_{n} \sin n x=\sum_{n=1}^{\infty} \frac{2 k}{n \pi}\left(1-(-1)^{n}\right) \sin n x
$$

$$
\begin{aligned}
& \frac{2 \pi}{\pi} \sum_{n=1}^{\infty} \frac{1}{n}\left(1-(-1)^{0}\right) 6 m n a \\
& =\frac{2 k}{\pi}\left[\frac{1}{1} 2 \sin x+0+\frac{1}{3} \times 2 \sin 3 x+0+\frac{1}{5}=3\right. \\
& f(x)=\frac{4 k}{\pi}\left[\sin x \frac{\sin 3 x}{3}+\frac{\sin 5 x}{5}+\cdots\right] \\
& x=\pi / 2 \quad k=\frac{4 k}{\pi}\left[\sin \pi / 2+\frac{\sin \frac{3 \pi}{2}}{3}+\frac{\sin 5 \pi / 2}{5}+\cdots\right] \\
& \pi / 4=[1+-1 / 3+1 / 5 \cdots] \\
& \pi / 4=1-1 / 3+1 / 5 \\
& \operatorname{Sin} n \pi=0 \quad \cos n \pi=(-1)^{n}
\end{aligned}
$$

3. Expond in a - Fourier series the function $f(x)=e^{x}$ in the interal $0<x<2 \pi$
$A:$

$$
\begin{aligned}
& f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos n x+b_{n} \sin n x . \quad\left[\begin{array}{l}
\text { forsetion } \\
\text { nex thes }
\end{array}\right. \\
& a_{0}=\frac{1}{\pi} \int_{0}^{2 \pi} f(x) d x \\
& =\frac{1}{\pi} \int_{0}^{2 \pi} e^{x} d x=\frac{1}{\pi}\left(e^{x} \int_{0}^{2 \pi}=\frac{1}{\pi}\left(e^{2 \pi}-1\right)\right. \\
& a_{0}=\frac{e^{2 \pi}-1}{\pi} \\
& a_{0}=\frac{1}{\pi} \int_{0}^{d \pi} f(x) \cos n x d x=\frac{1}{\pi} \int_{0}^{\infty \pi} e^{7} \cos n x d x . \\
& \left.=\frac{-1}{\pi} \frac{e^{x}}{1+n^{2}}(\cos n x+n \sin n \pi)\right)_{0}^{2 \pi} \\
& =\frac{1}{\pi}\left[\frac{e^{2 \pi}}{n^{2}+1}(\cos 2 n \pi+n \sin 2 n \pi)-\frac{1}{n^{2}+1}(\cos \theta+n \sin \theta)\right) \\
& a_{n}=\frac{1}{\pi\left(n^{2}+1\right)}\left[e^{2 \pi}-1\right]
\end{aligned}
$$

$$
\begin{aligned}
& b_{n}=\frac{1}{\pi} \int_{0}^{2 \pi} f(x) \sin n x d x \\
& =\frac{1}{\pi}\left[\int_{0}^{21} e^{x} \operatorname{sinnx} d x\right]=\frac{1}{\pi}\left[\frac{e^{x}}{n^{2}+1}[\sin n x-n \cos n x]\right]^{m} \\
& =\frac{1}{\pi}\left[\frac{e^{2 \pi}}{n^{2}+1}[(\sin 2 n \pi-n \cos 2 n \pi)]-\frac{1}{n^{2}+1}[\sin 0 \text {-ncn } n)\right. \\
& =\frac{1}{\pi(n)}\left[-n e^{2 n}+n\right]=\frac{n}{\pi\left(n^{2}+1\right)}\left(1-e^{2 \pi}\right) \\
& b_{0}=\frac{n}{\pi\left(n^{2}+1\right)}\left(1-e^{2 \pi}\right) \\
& f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos n x+b_{n} \sin n x \\
& =\frac{1}{2 \pi}\left(e^{2 \pi}-1\right)+\sum_{n=1}^{\infty} \frac{1}{\pi\left(n^{2}+1\right)}\left(e^{2 \pi}-1\right) \cos n x+\frac{n}{\pi\left(n^{2}\right)\left(1-e^{2 n}\right)} \sin \pi x . \\
& =\frac{1}{2 \pi}\left(e^{2 \pi}-1\right)+\frac{e^{2 \pi}-1}{\pi}\left[\sum_{n=1}^{\infty} \frac{\cos n x}{n^{2}+1}-\sum_{n=1}^{\infty} \frac{n}{n^{2}+1} \sin n n\right] \\
& =\frac{v}{2 \pi}\left(e^{2 \pi}-1\right)+\frac{e^{2 \pi}-1}{\pi}\left[\left[\frac{\cos x}{1^{2}+1}+\frac{\cos 2 x}{2^{2}+1}+\cdots\right]-\right. \\
& {\left[\frac{6 \sin x}{1^{2}+1}+\frac{2}{2^{2}+1} \sin 2 x+\cdots\right]} \\
& \frac{1}{2 \pi}\left(e^{2 \pi}-1\right)+\frac{e^{2 \pi}-1}{\pi}\left[\left(\frac{\cos x}{2}+\frac{\cos 2 x}{5}+\cdots\right)-\left(\frac{\sin x}{2}+\frac{2 \sin x}{5}\right]\right. \\
& =\frac{e^{2 \pi}-1}{\pi}\left[\frac{1}{2}+\left(\frac{\cos 2 x}{2}+\frac{\cos 2 x}{5} \cdots\right)-\left(\frac{\sin x}{2}+\frac{2 \sin 2 x}{5}\right)\right.
\end{aligned}
$$

4. Exporod in - Tourier serces the funsctum $f(x)=|x|$ in the interval $-4<x<\pi$. Deduce - that $\frac{\pi^{2}}{8}=\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+$.

$$
\begin{aligned}
& f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos n x+b_{n} \sin n x . \\
& f(x)=|x| \quad \cdot f(-x)=|-x| f(x)=f(x) \text { even forseti } \\
& b_{n}=0 \\
& a_{0}=\frac{Q}{\pi} \int_{0}^{\pi} f(x) d x=\frac{2}{\pi} \int_{0}^{\pi} x \cdot d x \\
& a_{0}=\pi
\end{aligned}
$$

$$
\begin{aligned}
& a_{0}=\pi \\
& a_{0}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \cos n x d x=\frac{2}{\pi} \int_{0}^{\pi} x \cos n x d x \\
&=2 / \pi\left[x \times \frac{\sin n x}{n}-1 \cdot \frac{\cos n x}{n^{2}} \int_{0}^{\pi}\right. \\
&=\frac{2}{\pi}\left[\pi \frac{\sin n \pi}{n}+\frac{\cos n \pi}{n^{2}}-\frac{\cos 0}{n^{2}}\right] \\
&=\frac{2}{\pi}\left[\frac{(-1)^{n}-1}{n^{2}}\right]
\end{aligned}
$$

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos n x
$$

$$
=\frac{\pi}{2}+\sum_{n=1}^{\infty} \frac{2}{\pi n^{2}}\left((-1)^{n}-1\right) \cos n x
$$

$$
=\frac{\pi}{2}+\frac{2}{\pi}\left[\frac{-2 \cos x}{12}+\frac{-2 \cos 3 x}{3^{2}}-2 \cos \frac{\sin }{5^{2}}\right]
$$

$$
=\frac{\pi}{2}-\frac{4}{\pi}\left[\frac{\cos x}{12}+\frac{\cos 3 x}{3^{2}}+\cdots\right]
$$

put $x=0 . \quad f(x)=0$.

$$
\begin{aligned}
& 0=\frac{\pi}{2}-4 / \pi\left[\frac{\cos 0}{12}+\frac{\cos 0}{3^{2}}+\frac{\cos 0}{5^{2}}+\cdots\right] \\
& \pi / 2=4 / \pi\left[\frac{1}{12}+\frac{11}{3^{2}}+\frac{1}{5^{2}}=\cdots\right] \\
& \frac{\pi^{2}}{8}=\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\cdots
\end{aligned}
$$

Expond $f_{000}=x \sin x,-\pi<x<\pi$ as a -Tourier Sewes.

$$
\begin{array}{r}
f(x)=x \sin x, \quad \text { Deducethat } \frac{1}{1 \cdot 3}-\frac{1}{3.5}+\frac{1}{5 \cdot 2}-\frac{1}{7 \cdot 9}=\frac{\pi-3}{4} \\
f(x)=x \sin x,
\end{array}
$$

$f(-x)=-x \sin (-x)=x \sin x=f(x)$ even furpetion

$$
\begin{aligned}
b_{0} & =0 . \\
a_{0} & =\frac{2}{\pi} \int_{0}^{\pi}-f(x) d x \\
& =\frac{2}{\pi}\left[x \left(x-\cos x--\sin x \int_{0}^{\pi} x \sin x d x .\right.\right. \\
& =\frac{2}{\pi}[-\pi \cos \pi+0+(\sin n-\sin x)] \\
a_{0} & =\frac{2}{\pi} x-\pi x-1=2
\end{aligned}
$$

$$
a_{n}
$$

$$
=\frac{2}{\pi} \int_{0}^{a} f(x) \cos n x d x \text {. }
$$

$$
\begin{aligned}
& =\frac{1}{\pi} \int_{0}^{1} x(2 \sin x \cos n x) d x \text {. } \\
& =\frac{1}{\pi} \int_{0}^{7} x(2 \cos n x \sin x) d x \\
& =\frac{1}{\pi} \int_{0}^{\pi}[\sin (n+1) x-\sin (n-1) x] d x \\
& -=\frac{1}{\pi}\left[\int_{0}^{1} x\left(\sin (n+1) x d x-\int_{0}^{0} x \sin (n-1) x d x\right]\right. \\
& =\frac{1}{\pi}\left[\left[x x-\frac{\cos (n+1) x}{n+1}-x-\frac{\sin (n+1) x}{(n+1)^{2}}\right]-\frac{x \times \cos (n-1) x}{(n-1)}-\frac{1 x}{(n)}-\frac{\sin (n-1)}{n-2}\right] \\
& =\frac{1}{\pi}\left[-\frac{\cos (n+) \pi}{n+1}+\frac{\sin (n+1) \pi}{(n+1)^{2}}\right]-\left[\frac{-\pi \cos (n-1) \pi}{(n-1)}+\frac{\sin (n-1) \pi}{\left(n-n^{3}\right.}\right] \\
& =\frac{1}{\pi}\left[0 \pi\left[\frac{\cos (n+1) \pi}{n+1}+\frac{\cos (n-1) \pi}{n-1}\right]\right] \\
& =-\frac{\cos (n+1 \pi}{n+1}+\frac{\cos (n-1) \pi}{n-1} \quad n \neq 1
\end{aligned}
$$

Find a - Fourier Sevres to represent $x \cdot x^{2}$.Sem $x=-\pi$ to $x=\pi$. Hence deduce that $\frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}} \cdots \frac{\pi^{2}}{2^{2}}$.

$$
\begin{aligned}
& f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos n x+b_{n} \sin n x \text {. } \\
& a_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) d x \text {. } \\
& =\frac{1}{\pi} \int_{-\pi}^{\pi}\left(x-x^{2}\right) d x=\frac{1}{\pi}\left(\frac{x^{2}}{2}-\frac{x^{3}}{3}\right]_{-\pi}^{\pi} \\
& =\frac{1}{\pi}\left(\left(\frac{\pi^{2}}{2}-\frac{\pi^{3}}{3}\right)-\left(\frac{\pi^{2}}{2}-\left(-\frac{\pi^{3}}{3}\right)\right)\right. \\
& =\frac{1}{\pi} x-\frac{2 \pi^{3}}{3}=-\frac{2}{3} \pi^{2} \quad a_{0}=-\frac{2}{3} \pi^{2} \\
& a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} \operatorname{fin} \cos n x d x \\
& \begin{array}{l}
=\frac{1}{\pi} \int_{-\pi}^{\pi}\left(x-x^{2}\right) \cos n x d x \\
=\frac{1}{\pi} \cdot\left\{\left(x-x^{2}\right) \times \frac{\sin n x}{n}-(1-2 x) \times-\frac{\cos n x}{n^{2}}+-2 x-\frac{\sin n x}{n^{3}}\right\}_{-\pi}^{\pi}
\end{array} \\
& =\frac{1}{\pi}\left\{\left[\left(\pi-\pi^{2}\right) \frac{\sin n \pi}{n}+(1-2 \pi) \frac{\cos n \pi}{n_{2}}+\frac{2 \sin n \pi}{n^{3}}\right]-\right. \\
& \left.\left[\left(-\pi-\pi^{2}\right) \frac{\operatorname{smn}(-\pi)}{n}+(1+2 \pi) \frac{\cos n(-\pi)}{n^{2}}+\frac{2 \sin n(-\pi)}{n^{3}}\right]\right\} \\
& =\frac{1}{\pi}\left\{\frac{(1-2 \pi)(-1)^{n}}{n^{2}}-\frac{(1+2 n) \frac{(-1)^{n}}{n^{2}}}{\}}\right. \\
& \frac{1}{\pi}-\frac{4 \pi(-1)^{n}}{n^{2}}=-\frac{4}{n^{2}}(-1)^{n} \quad a_{n}=\frac{-4}{n^{2}}(-1)^{n} \\
& b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi}\left(x-x^{2}\right) \sin n x d x \\
& =\frac{1}{\pi}\left\{\left(x-x^{2}\right) \times \frac{-\cos n x}{n}-(1-2 x) \times \frac{-\sin n x}{n^{2}}+-2 x \frac{\cos n x}{n^{3}}\right]_{-\pi}^{1}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{\pi}\left\{-\left(\pi-\pi^{2}\right) \frac{\cos n \pi}{n}-\frac{2 \cos n \pi}{n^{3}}-\left(\frac{-\left(-\pi-\pi^{2}\right)}{n} \cos n \pi-\frac{2 \cos n \pi}{n 3}\right)\right] \\
& =\frac{1}{\pi}\left[\frac{-2 \pi \cos n}{n}\right]=\frac{-2}{n}(-1)^{n}, b_{n}=\frac{-2}{n}(-1)^{n} \\
& \begin{array}{l}
f(x)=-\frac{1}{3} n^{2}+\sum_{n=1}^{\infty}-\frac{4}{n^{2}}(-1)^{n} \cos n x-2 \ln (-1)^{n} \sin n x .
\end{array} \\
& =-\frac{1}{3} \pi^{2}-4 \sum_{n=1}^{\infty} \frac{(-1)^{n} \cos n x}{n^{2}}-2 \sum_{n=1}^{\infty} \frac{(-1)^{n} \sin n x}{n} . \\
& =-\frac{1}{3} \pi^{2}-4\left[-\frac{\cos x}{12}+\frac{\cos 2 x}{2^{2}}-\frac{\cos 3 x}{3^{2}} \cdots\right]_{A} \\
& -2\left[-\frac{\sin x}{12}+\frac{\sin 2 x}{2}-\frac{\sin 3 x}{3} \cdots\right] \\
& f(x)=-\frac{\pi^{2}}{3}+4\left[\frac{\cos x}{7}-\frac{\cos 2 x}{2^{2}}+\frac{\cos 3 x}{3^{2}} \cdots\right] \\
& +2\left[\frac{\sin x}{11}-\frac{\sin 2 x}{2}+\frac{\sin 3 x}{-3} \cdots\right] \\
& x=0 \\
& 0-\theta^{2}=-\frac{\pi^{2}}{3}+4\left[\frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}} \cdots\right] \\
& 42[0-0+0 \cdots] \\
& 0=-\frac{11^{2}}{3}+4\left[\frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}} \cdots\right] \\
& \frac{72}{3}=4\left[\frac{1}{1^{2}}-\frac{1}{2^{2}}+1 / 3^{2} \cdots\right] \\
& \frac{\pi^{2}}{12}=\frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}} \cdots
\end{aligned}
$$

7. Obtain the fourier series for the function $f(x)=x^{2}$ $-\pi<x<\pi$. Hence $g \cdot T$
1) $\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3} 2^{+\cdots}=\pi^{2} / 6$
2) $\frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}} \cdots=\pi^{2} / 12$
3) $\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}} \cdots \cdots=\pi^{2} / 8$.

Ab, $\quad f(x)=x^{2} \rightarrow$ even foo $b_{n}=0$.

$$
\begin{aligned}
& f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos n x . \\
& a_{0}=\left.\frac{2}{\pi}\right|_{0} ^{\pi} P(x) d x \\
&= \frac{2}{\pi} \int_{0}^{\pi} x^{2} d x=2 / \pi\left(x^{3} / 3\right)_{0}^{\pi}=2 / \pi \cdot \pi^{3} / 3=\frac{2}{3} \pi^{2} \quad a_{0}=\frac{2 \pi^{2}}{3} \\
& a_{n}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \cos n x d x=\frac{2}{\pi} \int_{0}^{\pi} x^{2} \cos n x d x \\
&=\frac{2}{\pi}\left[x^{2} \times \frac{\sin n x}{n}-2 x \times \frac{\cos n x}{n^{2}}+2 x-\frac{\sin n x}{n^{3}}\right]_{0}^{\pi} \\
&\left.=\frac{2}{\pi}\left[2 \pi \frac{4(-1)^{n}}{n^{2}}\right]=\frac{4(-1)^{n}}{n^{2}}=\frac{4(-1)^{n}}{n^{2}}\right]
\end{aligned}
$$

7

$$
\begin{aligned}
f(x) & =\frac{\pi^{2}}{3}+\sum_{n=1}^{\infty} \frac{4(-1)^{n}}{n^{2}} \cos n x \\
x^{2} & =\frac{\pi^{2}}{3}+4 \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}} \cos n x \\
& =\frac{\pi^{2}}{3}+4\left[-\frac{\cos x}{1^{2}}+\frac{\cos 2 x}{2^{2}}-\frac{\cos 3 x}{3^{2}}=\cdots\right] \\
x^{2} & =\frac{\pi^{2}}{3}-4\left[\frac{\cos x}{1^{2}}-\frac{\cos 2 x}{2^{2}}+\frac{\cos 3 x}{3^{2}} \cdots\right]
\end{aligned}
$$

Put $x=\pi$

$$
\begin{aligned}
& \text { Put } x=\pi \\
& \pi^{2}=\frac{\pi^{2}}{3}-4\left[\frac{\cos \pi}{1^{2}}-\frac{\cos 2 \pi}{2^{2}}+\cos \frac{3 \pi}{3^{2}}-\cdots\right] \\
& \pi^{2}=\frac{\pi^{2}}{3}-4\left[-\frac{1}{1^{2}}-\frac{1}{2^{2}}-\frac{1}{3^{2}} \cdots\right] \\
& \frac{2 \pi^{2}}{3^{2}}=4\left(\frac{1}{1^{2}}+\frac{1}{2^{2}}+13^{2}+\cdots\right) \Rightarrow \frac{1}{1^{2}}+\frac{1}{2^{2}}+\cdots=\frac{2 \pi^{2}}{12}=\pi^{2} / 6 / 1
\end{aligned}
$$

Scanned by CamScanner

Put $x=0$.

$$
\begin{align*}
& x=0=\frac{\pi^{2}}{3}-4\left[\cos 0-\frac{\cos 0}{2^{2}}+\frac{\cos 0}{3^{2}} \cdots\right] \\
& \frac{\pi^{2}}{3}=4\left[\frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}} \cdots\right] \\
& \frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}} \cdots=\frac{\pi^{2}}{12} \text { (2) } \tag{2}
\end{align*}
$$

Adding (1) \& (2)

$$
\begin{aligned}
& \left(\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\cdots\right)+\left(\frac{1}{1^{2}}-\frac{1}{2^{2}}+1 / 3^{2}-1 / 4^{2}+\cdots\right)=\frac{\pi^{2}}{6}+\frac{\pi^{2}}{12} \\
& 2\left[\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}} \cdots\right]=\frac{3 \pi^{2}}{12}=\pi^{2} / 4 . \\
& \frac{1}{1^{2}}+\frac{1}{3^{2}}+\cdots=\pi^{2} / 8
\end{aligned}
$$

8 food the. fourier serve for $f(x)$ in the interval $(-\pi, \pi)$ when $f(x)=\left\{\begin{array}{ll}\pi+x & -\pi<x<0 . \\ \pi-x & 0<x<\pi \\ m \sin x\end{array}\right.$.

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos n x+b_{n} \sin n x
$$

$$
\begin{aligned}
a_{0} & =\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) d x \\
& =\frac{1}{\pi}\left\{\int_{-\pi}^{0}(\pi+x) d x+\int_{0}^{\pi}(\pi-x) d x\right. \\
& \left.=\frac{1}{\pi}\left\{\pi\left(x+\frac{x^{2}}{2}\right]_{-\pi}^{0}+\pi x-\frac{x^{Q}}{2}\right]_{0}^{\pi}\right\} \\
& =\frac{1}{\pi}\left[+\pi^{2}-\frac{\pi^{2}}{2}+\pi^{2}-\frac{\pi^{2}}{2}\right\}=4 / \pi \cdot x^{9}=\pi \\
a_{0} & =\pi
\end{aligned}
$$

$$
\begin{aligned}
& a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} P(x) \cos n x d x \text {. } \\
& =\frac{1}{\pi}\left\{\int_{-\pi}^{0}(\pi+x) \cos n x d x+\int_{0}^{\pi}(\pi-x) \cos n x d x\right. \\
& =\frac{1}{\pi}\left\{\left[(\pi+x) \frac{\sin n x}{n}-1 \cdot \frac{-\cos n x}{n^{2}}\right]_{-\pi}^{0}+(\pi-x) \frac{\sin n x}{n}--1 x-\frac{\cos n x}{n^{2}}\right]_{0}^{\pi} \\
& =\frac{1}{\pi}\left\{\left[\frac{1}{n^{2}}-\left(\frac{(-1)^{n}}{n^{2}}\right)\right]+\left[-\frac{(-1)^{n}}{n^{2}}+\frac{1}{n^{2}}\right]\right. \\
& =\frac{1}{\pi}\left[\frac{2}{n^{2}}-\frac{2(-1)^{n}}{n^{2}}\right] \\
& a_{n}=\frac{2}{\pi n^{2}}\left[1-(-1)^{n}\right] \\
& b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} \operatorname{fin} \sin x x d x \text {. } \\
& =\frac{1}{\pi}\left[\int_{-\pi}^{0}(\pi+x)^{\sin x} x d x+\int_{0}^{\pi}(\pi-x) \sin x x d x\right] \\
& \left.=\frac{1}{\pi}\left[(\pi+x) x-\frac{\cos n x}{n}-1 \cdot \frac{\sin n x}{n^{2}}\right]_{-\pi}^{0}+(\pi-x) x-\frac{\cos n x}{n}-\frac{1 x}{n} \frac{\sin m}{n^{2}}\right]_{0}^{\pi} \\
& =\frac{1}{\pi}\left[\left(-\pi \frac{1}{n}\right]+0+\left(0-\pi x-\frac{1}{n}\right)\right] \\
& =\frac{1}{\pi}\left[\frac{-\pi}{n}+\pi / n\right]=0 . \\
& f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos n x \text {. } \\
& =\pi / 2+\sum_{n=1}^{\infty} \frac{2}{\pi n^{2}}\left(1-(-1)^{n}\right] \cos n \pi \\
& =\frac{\pi}{2}+\frac{2}{\pi}\left[\frac{2}{1^{2}} \cos x+\frac{2}{3^{2}} \cos 3 x+\frac{2}{5^{2}} \cos 5 x \ldots\right] \\
& f\left(x=\frac{\pi}{2}+\frac{4}{\pi}\left[\frac{\cos x}{12}+\frac{\cos 3 x}{3^{2}}+\frac{\cos 5 x}{5^{2}}+\cdots\right]\right.
\end{aligned}
$$

Change of Interval (-burier series of Asbitrasy periodic functions).
Suppose. $f(x) 5^{\circ}$ of length $2 l$. in the interval $-1 \leq x \leq l$. Them the Fourier Series is given by

$$
\begin{aligned}
& f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \frac{\cos n \pi x}{l}+b_{n} \frac{\sin n \pi x}{l}\right) \text { Where } \\
& a_{0}=\frac{1}{l} \int_{-l}^{l} f(x) d x \\
& a_{n}=\frac{1}{l} \int_{-l}^{l} f(x) \cos \frac{n \pi x}{l} d x \quad n=1,2,3 \ldots \\
& b_{n}=\frac{1}{l} \cdot \int_{-l}^{l} f(x) \frac{\sin n \pi x}{l} d x \quad n=1,2,3 \ldots
\end{aligned}
$$

length of interval -al. if x is point of discontinuity then $f(x)=\frac{-1}{2}[\cdot p(x)+f(x)]$

1) the interval $0 \leq x \leq 2 l$
plops
2) find the -Fourier series of $f(x)=x-x^{Q}$ in the interval $-1 \leq x \leq 1$
Ans: Length of mierval $1-(-1)=2$

$$
\begin{aligned}
& 2 l=2 \quad l=1 \\
& \therefore \quad f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos \frac{n \pi x}{l}+b_{n} \sin \frac{n \pi x}{l}\right) \\
&=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n \pi x+b_{n} \sin n \pi x\right)
\end{aligned}
$$

$$
\begin{aligned}
& q_{0}=\frac{1}{l} \int_{-1}^{l} f(x) d x=\frac{1}{1} \int_{-1}^{1}\left(x-x^{2}\right) d x \\
& \left.\left.=\frac{x^{2}}{2}-\frac{x^{3}}{3}\right]_{-1}^{1}=\left[\frac{1}{2}-\left(\cdot \frac{1}{3}\right) \cdot\right]-\left(\frac{1}{2}+1 / 3\right)\right] \\
& a_{D}=-2 / 3 \\
& =-2 / 3 \\
& a_{n}=\frac{1}{l} \int_{-l}^{l} f(x) \cos \frac{\max x}{l} d x \text {. } \\
& =\int_{-1}^{1}\left(x-x^{2}\right) \cos n \pi x d x \text {. } \\
& =\left(x-x^{2}\right) \frac{\sin n \pi x}{n \pi}-(1-2 x)^{x-} \frac{\cos n \pi x}{(n \pi)^{2}}+-\frac{2 x-\frac{\sin n \pi x}{(n \pi)^{3}}}{\operatorname{cin}^{1}} 1 \\
& =+-1 \frac{\cos n \pi}{(n \pi)^{2}}-\left(0+\left(3 \frac{\cos n \pi}{(n \pi)^{2}}\right)\right. \\
& a_{n}=\frac{-4(-1)^{n}}{n^{2} \pi^{2}} \\
& b_{n}=\frac{1}{l} \int_{-l}^{l} f(x) \frac{\sin \frac{n \pi x}{e} d x}{l} \\
& =\int_{-1}^{1}\left(x-x^{2}\right) \sin n x d x \text {. } \\
& =\left(x-x^{2}\right) \times \frac{-\cos n \pi x}{n \pi}-(1-2 x) \times \frac{\sin n \pi x}{(n \pi)^{2}} . \\
& \left.+(-2) \frac{\cos n \pi x}{(n \pi)^{3}}\right]_{-1}^{1} \\
& \left.=-\frac{2 \cos n \pi}{(n \pi)^{3}}-\left(2 \frac{\cos n \pi}{n \pi}-2 \frac{\cos n \pi}{(n \pi)^{3}}\right)\right) \\
& b_{n}=\frac{-2(-1)^{n}}{n \pi}
\end{aligned}
$$

$$
\begin{aligned}
f(x)= & \frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos n \pi x+\operatorname{bon} \sin n \pi x \\
= & \left.\frac{-2}{3 x 2}+\sum_{n=1}^{\infty} \frac{-4(-1)^{n}}{n^{2} \pi^{2}} \cos n \pi x+\frac{-2(-1)^{n}}{n \pi} \sin n x\right] \\
x-x^{2}= & -\frac{1}{3}+\frac{4}{\pi / 4}\left[\frac{1}{12} \cos \pi x-\frac{1}{2^{2}} \cos 2 \pi x+\frac{1}{3^{2}} \cos 3 \pi x \cdots\right] \\
& +\frac{2}{\pi}\left[\frac{\sin \pi x}{1}-\frac{\sin 2 \pi x}{2}+\frac{\sin 3 \pi x}{3} \cdots\right]
\end{aligned}
$$

Note if the interval $-a \leq x \leq 2$ thin lengb of the holequal $b^{\circ} \quad 2-(-2)=4 \quad$ i $\quad 2(=4 \quad l=a$ If the interval $0 \leq x \leq 4$ then length on undelved is $\quad 4-0=4 \quad 2 l=4 \quad l=2$
Q). -rid the - Busier serves of the function.

$$
f(x)= \begin{cases}0 & -2 \leq x<-1 \\ k & -1 \leq x<1 \\ 0 & 1 \leq x \leq 2\end{cases}
$$

A. Here the interval $-2 \leq x \leq 2$.

Length of nerved $\quad 2 l=4 \quad l=2$

$$
\begin{align*}
f(x) & =\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \frac{n \pi x}{2}+b_{n} \frac{\sin n \pi x}{2} \\
a_{0} & =\frac{1}{l} \int_{-2}^{l} f(x) d x \\
& =\frac{1}{2} \int_{-2}^{2} f(x) d x \\
& =\frac{1}{2}\left[\int_{-2}^{1} 0 d x+\int_{-1}^{1} k d x+\int_{1}^{2} 0 d x\right] \\
& =\frac{1}{2}[k x]_{-1}^{1}=\frac{1}{2}(k-k)=\frac{2 k}{2}=k \tag{0}\\
a_{n} & =\frac{1}{1} \int_{1}^{1} f(x) \cos n \pi x d x
\end{align*}
$$

$$
\begin{aligned}
& a_{n}=\frac{1}{2} \int_{-2}^{2} f(x) \frac{\cos n \pi x}{2} d x \text {. } \\
& =\frac{1}{2}\left[\int_{-2}^{-1} 0 \cos \frac{n \pi x}{2} d x+\int_{-1}^{1} k \cos \frac{n \pi x}{2} d x+\int_{1}^{1} 0 \cos \frac{1}{2}\right) \\
& =\frac{1}{2}\left[\int_{-1}^{1} k \frac{\cos n \pi x}{2} d x\right] \\
& =\frac{k}{2}\left[\frac{\sin \frac{n \pi x}{2}}{\frac{n \pi}{2}}\right]_{-1}^{1} . \\
& =\frac{k}{2}\left[\frac{\sin \frac{n \pi}{2}}{\frac{n \pi}{2}}-\frac{\sin \frac{(-n \pi)}{2}}{\frac{n \pi / 2}{2}}\right] \\
& =\frac{\pi}{2} \quad 2 \sin \frac{n \pi}{2} \\
& a_{n}=\frac{2 k}{n \pi} \sin n \pi / 2 . \\
& b_{n}=\frac{1}{l} \int_{-l}^{1} f(x) \sin \frac{n \pi x}{2} d x=\frac{1}{2} \int_{-2}^{2}-f(x) \sin \frac{\pi \pi x}{2} d x \\
& b_{n}=\frac{1}{2}\left[\int_{-1}^{1} k \sin \frac{n \pi x}{2} d x\right] \\
& \left.=\frac{k}{2} \times \frac{-\frac{\cos n \pi x}{2}}{\frac{n \pi / 2}{2}}\right]_{-1}^{1}=-\frac{k}{2}\left[\frac{\cos \frac{n \pi}{2}}{\frac{n \pi}{2}}-\frac{\cos \left(-\frac{n \pi}{2}\right)}{\frac{n \pi}{2}}\right] \\
& b_{n}=0 \\
& f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{n \pi x}{2}\right)+b_{0} \frac{\operatorname{sinc} \frac{1}{2}}{2} \\
& =\frac{k}{2}+\sum_{n=1}^{\infty} \frac{2 k}{n \pi} \sin \frac{n \pi}{2} \cdot \cos \left(\frac{n \pi x}{2}\right) \\
& =\frac{k}{2}+\frac{2 k}{\pi}\left[\frac{\sin \frac{\pi}{2} \cos \frac{\pi x}{2}+\frac{\sin \frac{2 \pi}{2}}{2} \frac{\cos \frac{2 \pi x}{2}}{2}+\frac{\sin \frac{8 \pi}{2} \cos 3 \pi x}{3}-2 k 020}{2}\right. \\
& =\frac{k}{2}+\frac{2 k}{\pi}\left[\cos \frac{\pi x}{2} \Rightarrow-\frac{\left.\cos \frac{3 \pi x^{2}}{3}+\frac{\cos \frac{5 \pi x}{2}}{5} \ldots . .\right]}{3}\right.
\end{aligned}
$$

HOW
4) Find the fourier serves for the given fraction.

1) $f(x)=e^{-x}$ no the nerval $0<x<2 \pi$

Ans: $f(x)=1-\frac{e^{-2 \pi}}{\pi}\left[\begin{array}{c}\left.\frac{1}{2}+\left(\frac{1}{2} \cos x+\frac{1}{5} \cos 2 x+\frac{1}{10} \cos 3 x-\right)\right] \\ \\ +\left(\frac{1}{2} \sin x+\frac{a}{5} \sin 2 x+\frac{3}{10} \sin 3 x+\cdots\right)\end{array}\right]$
2). $f(x)=\left(\frac{\pi 1-x}{2}\right)^{2}$ ar s the interval $0<x<2 \pi$.

Dedrece that $\frac{1}{1^{2}}+\frac{1}{2^{2}}+\cdots \cdot=\pi^{2} / 6$.
Ans. $\quad f(x)=\frac{\pi^{2}}{12}+\sum_{n=1}^{\infty} \frac{\cos n x}{n^{2}}$.
3) $f(x)=\left\{\begin{array}{ll}0 & -\pi \leq x \leq 0 \\ \sin x & 0 \leq x \leq \pi\end{array}\right.$ Deduce that
$\sin x \quad 0 \leqslant x \leqslant \pi \quad \frac{1}{1 \cdot 3}+\frac{1}{3 \cdot 5}+\frac{1}{5 \cdot 9}+\cdots=y_{2}$.
(deduction put $x=0$
Ans $f(x)=\frac{1}{\pi}+\frac{1}{2} \sin x-\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{\cos 2 n x}{4 n^{2}-1}$

$$
f(0)=\frac{1}{2}\left[\left(0^{+1}+1\right)\right]
$$

(4) $\quad f(x)=\left\{\begin{array}{cc}-\frac{\pi}{-1} & -\pi<x<0 . \\ x & 0<x<\pi\end{array}\right.$

Deduce that

$$
\frac{1}{1^{2}}+\frac{1}{3^{2}}+\cdots=\pi^{2} / 8
$$

- [Hunt: - Tor deduction put $x=0$ w. the expansion of $f(x)$]

Ans: $f(x)=-\pi / 4-\frac{2}{\pi}\left(\cos x+\cos \frac{3 x}{3^{2}}+\frac{\cos 5 x}{5^{2}}+\cdots\right)$

$$
+\left(3 \sin x-\frac{\sin 2 x}{2}+\frac{\sin 3 x}{40}-\frac{\sin 4 x}{4}-\right)
$$

put $x=0 \quad f(0)=\frac{1}{2}\left[f\left(0^{t}\right)+f(\overline{0})\right]$

$$
\begin{array}{ll}
& =\frac{1}{2}[0+-\pi]=-\frac{\pi}{2} \\
-\frac{\pi}{2} & =-\frac{\pi}{4}-\frac{2}{\pi}\left[1+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\cdots\right]+0 \\
\frac{2}{\pi}\left[1+\frac{1}{3^{2}}+\frac{1}{5^{2}} \cdots\right. &]=\frac{\pi}{2}-\pi / 6=\pi / 4 \Rightarrow 1+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\cdots=\frac{\pi^{2}}{2}
\end{array}
$$

Suppose $t(x)$ is defied in the interval $0<x \in 1$ thin It hew the half range cosine series expansion given by

Similarly the function has the half-range sine serves expansion given by

$$
f(x)=\sum_{n=1}^{\infty} b_{n} \sin x \text { Where. }
$$

$$
a_{0}=\frac{2}{\pi} \int_{0}^{\pi} f(x) d x
$$

$$
\begin{array}{ll}
a_{0}=\frac{2}{\pi} \int_{0}^{1} f(x) d x . & b_{n}=\frac{2}{\pi} \int_{0}^{1} f(x) \sin n x d x . \\
a_{n}=\frac{2}{\pi} \int_{0}^{\pi}-f(x) \cos n x d x & \text { the interval } 0 \leq x \leq 1,
\end{array}
$$

Suppose $\cdot f(x)$ is defined in the interval $0 \leq x \leq l$, then the function has the half-lange cosine serves expormsion given by
$f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \frac{n \pi x}{l}$. Where $a_{0}=\frac{2}{l} \int_{0}^{l} f(x) d x$.

$$
a_{n}=\frac{2}{l} \int_{0}^{l} f(x) \cos \frac{n \pi x d x}{l}
$$

Half Range. Sui Series's expansion is

$$
f(x)=\sum_{n=1}^{\infty} b_{n} \frac{\sin n \pi x}{l}
$$

Where $b_{n}=\frac{Q}{d} \int f(x) \operatorname{sinman} \frac{1}{l}$ $d x$.

Pbms .
1 Exponal $\pi-x$ in a half. range sine serass wo the usterval $0 \leq x \leq \pi$ up to the. First tharetevers.
A: Half - range sine Series expansion of fox) to:

$$
\begin{aligned}
f(\pi) & =\sum_{n=1}^{\infty} b_{n} 3 n m x, \text { where } b_{n}: \frac{2}{\pi} \int_{0}^{\pi} \pi 0 \\
b_{n} & =\frac{2}{\pi} \int_{0}^{\pi}(\pi-x) \sin n x d x . \\
& =\frac{2}{\pi} \int^{\pi}(\pi-x) \frac{\cos n x}{n}-1 x-\left.\frac{\sin m x}{n 2}\right|_{0} ^{\pi}
\end{aligned}
$$

$$
\begin{aligned}
\frac{2}{\pi}\left[\frac{\pi}{n}\right] & =\frac{2}{n} \\
f(x)=\sum_{n=1}^{\infty} b_{n} \sin n x & =\sum_{n=1}^{\infty} \frac{2}{n} \sin x \\
& =2\left[\sin x+\frac{\sin 2 x}{a}+\frac{\sin 3 x}{3}+\cdots\right]
\end{aligned}
$$

2. From the half range. cosine series for the Function $f(x)=x^{2}$ in the range $0 \leq x \leq \pi$
A :

$$
\begin{aligned}
& f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos n x . \\
& a_{0}=\frac{2}{\pi} \int_{0}^{\pi} x(x) d x . \quad 2 / \pi \int_{0}^{\pi} x d x=\frac{2}{\pi}\left(\left.\frac{x^{2}}{3}\right|_{0} ^{\pi}\right. \\
& =\frac{2}{\pi} \pi^{3} / 3=\frac{2 \pi^{2}}{3} \quad a_{0}=\frac{2 \pi^{2}}{3} \\
& a_{n}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \cos n x d x \\
& =\frac{2}{\pi} \int_{0}^{\pi} x^{2} \cdot \cos n x d x \\
& =\frac{2}{n}\left[x^{2} \times \frac{\sin n x}{n}-2 n x-\frac{\cos n x}{n^{2}}+2 x-\frac{\sin n x}{n^{3}}\right]_{0}^{7} \\
& =\frac{2}{\pi}\left[2 \pi \frac{\cos n \pi}{n^{2}}\right]=\frac{4}{n^{2}}(-1)^{n} \quad a_{n}=\frac{4(-1)^{n}}{n^{2}} \\
& \therefore f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos n \pi \\
& =\frac{\pi^{2}}{3}+4 \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}} \cdot \cos n x \text {. } \\
& =\frac{\pi^{2}}{3}+4\left[-\frac{\cos x}{1^{2}}+\frac{\cos 2 x}{2^{2}}-\frac{\cos 3 x}{3^{2}} \cdots\right] \\
& =\frac{\pi^{2}}{3}-4\left[\frac{\cos x}{1^{2}}-\frac{\cos 2 x}{2^{2}}+\frac{\cos 3 x}{3^{2}} \cdots\right]
\end{aligned}
$$

8 . Obtewn half range cosine series experosion of the function $f(x)= \begin{cases}k x & 0 \leq x \leq 1 / 2 \\ k(1-x) & 1 / 2 \leq x \leq 1\end{cases}$
Deduce that $\frac{1}{1^{2}}+\frac{1}{3^{2}}+\cdots=\pi^{2} / 8$

$$
\left.\left[(l-x) \frac{\sin \frac{n \pi x}{l}}{\frac{n \pi}{l}}-1 x-\frac{\cos \frac{n \pi x}{l}}{\left(\frac{n \pi}{d}\right)^{2}}\right]_{l / 2}^{l}\right]
$$

$$
=\frac{2 k}{l}\left[\left[1 / 2 \frac{\sin \frac{n \pi}{2}}{\frac{n \pi}{l}}+\frac{\cos \frac{n \pi}{2}}{\left(\frac{n \pi}{l}\right)^{2}}-\left(0+\frac{1}{\left(\frac{n \pi}{1}\right)^{2}}\right)\right]\right.
$$

$$
+[[0-\cos n \pi]-[1, \sin n \pi \quad \text { Scanned by CamScanner }
$$

$$
\begin{aligned}
& \rightarrow f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \frac{n \pi x}{d} \\
& a_{0}=\frac{2}{l} \int_{0}^{l} f(x) d x=\frac{2}{l}\left[\int_{0}^{0 / 2} k x d x+\int_{\int / 2}^{l} k(1-x) d x\right] \\
& \left.=\frac{2}{l}\left[\left(\frac{k}{l} \frac{x^{2}}{2}\right]_{0}^{l / 2}+k[l x-x)_{2}\right]_{/ 2}^{l}\right] \\
& =\frac{2}{l}\left[\frac{k}{2} \frac{l^{2}}{4}+k\left(l^{2}-c^{2} / 2-\left(\frac{l^{2}}{2}-l^{2} / 8\right)\right]\right. \\
& =\frac{2}{l}\left[\frac{k l^{2}}{8}+k l^{2}-\frac{k l^{2}}{2}-k l^{2} / 2+k l^{2} / 8\right]=\frac{k l}{2} \\
& a_{n}=\frac{2}{1} \int_{0}^{l} f(x) \cos \frac{n \pi x}{l} d x \text {. } \\
& =\frac{2}{l} \cdot\left\{\int_{0}^{l / 2} k x \frac{\operatorname{cosn} \pi x}{l} \cdot d x+\int_{1 / 2}^{l} k(l-x) \cos n \pi x \cdot x\right. \\
& =\frac{2 k}{l}\left\{\left[\frac{x}{\sin \frac{\sin }{l}} \frac{-\frac{n \pi}{l}}{-\cos \frac{n \pi x}{l}} \frac{\left(\frac{n \pi}{l}\right)^{2}}{l / 2}\right]_{0}^{l / 1}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \frac{2 k}{l} \cdot\left\{\frac{10}{2 n} \frac{\sin 0 \pi}{\left(\frac{n \pi}{i}\right)}+\frac{\cos n \pi / 2}{\left(\frac{n \pi}{i}\right)^{2}} . \frac{1}{\left(\frac{n \pi}{e}\right)^{2}}\right. \\
& \frac{2 k}{1}\left\{\frac{1^{2}}{2 n \pi} \sin \frac{n \pi}{2}+\frac{l^{2}}{n^{2} \pi^{2}} \cos \frac{n \pi}{2}-\frac{n^{2}}{n^{2} \pi^{2}}-\frac{\theta^{2}(-1)^{n}}{n^{2} \pi^{2}}+\right. \\
& \left.\frac{l^{2}}{n^{2} \pi^{2}} \cos \frac{n \pi}{2}-\frac{c^{2}}{2 n \pi} \sin n \pi / 2\right\} \\
& =\frac{2 k t^{2}}{l n^{2} \pi^{2}} \frac{2 k}{l} \frac{l^{2}}{n^{2} \pi^{2}}\left\{2 \cos \frac{n \pi}{2}-1-(-1)^{n}\right\} \\
& =\frac{2 k l}{n^{2} \pi^{2}}\left[2 \cos \frac{n \pi}{2}-1-(-1)^{n}\right]
\end{aligned}
$$

When n odd $\cos n \pi / 2=0,(-1)^{n}=-1$

$$
a_{1}=0 \quad a_{3}=0, \quad a_{5}=0, \ldots
$$

Whin n is even $a_{2}=\frac{2 k l}{2^{2} \pi^{2}}[2 \cos \pi-1-1]=\frac{-8 k l}{\pi^{2} \cdot 2^{2}}$

$$
\begin{aligned}
a_{4} & =\frac{2 k l}{4^{2} \pi^{2}}[2 \cos 2 \pi-1-1]=0 \\
a_{6} & =\frac{2 k l}{6^{2} \pi^{\theta}}[2 \cos 6 \pi-1-1]=-\frac{8 k l}{\pi^{2} \cdot 6^{2}} \text { o } 80 \text { on } \\
f(x) & =\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \frac{n \pi x}{l} \\
& =\frac{k l}{4}+\left[\frac{-8 k l}{\pi^{2} 2^{2}} \cdot \cos \frac{2 \pi x}{l} \cdot \frac{\cos }{\operatorname{l}^{2}}+\frac{\frac{8 k l}{\pi^{2} \cdot 6^{2}} \cos \frac{6 \pi x}{l}-1}{\cos \frac{6 \pi x}{l}}+\frac{\cos ^{2}}{\pi^{2}}+\cdots\right]
\end{aligned}
$$

put $x=l . \quad f(l)=0$

$$
\begin{aligned}
& 0=\frac{k l}{4}-\frac{8 k l}{\pi^{2}}\left[\frac{\cos 2 \pi}{2^{2}}+\cos \frac{6 \pi}{6^{2}}+\cdots\right] \\
& \frac{4}{4} \frac{k l}{4}=\frac{8 k l}{\pi^{2}}\left[\frac{1}{2^{2}}+\frac{1}{6^{2}}+\cdots\right] \Rightarrow \frac{1}{2^{2}}+\frac{1}{6^{2}}+\cdots=\frac{\pi^{2}}{2 \pi} / 1
\end{aligned}
$$

$$
\begin{aligned}
\frac{1}{2^{2}}\left[\frac{1}{1^{2}}+\frac{1}{3^{2}}+\cdots\right] & =\frac{\pi^{2}}{32} \\
\frac{1}{1^{2}}+\frac{1}{3^{2}}+\cdots & =\frac{\pi^{2}}{8}
\end{aligned}
$$

af. Find halb-range sine Series for

$$
\begin{aligned}
& f(x)= \begin{cases}\frac{1}{4}-x, & 0<x<1 / 2 \\
x-3 / 4, & 1 / 2<x<1 .\end{cases} \\
& t=1 \\
& f(x)=\frac{a_{f}}{f}+\sum_{n=1}^{\infty} b_{n} \sin \frac{\sin \pi}{l} .=\frac{g_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \\
& =\sum_{n=1}^{\infty} b_{n} \sin n \pi x \text {. } \\
& b_{n}=\frac{2}{l} \int_{0}^{l} f(x) \frac{\sin n \pi x}{l} d x \\
& =\frac{2}{1}\left[\int_{0}^{1 / 2}\left(\frac{1}{4}-x\right) \sin n \pi x d x+\int_{42}^{1}\left(x-\frac{3}{4}\right) \sin n \pi x \cdot d x\right. \text {. } \\
& =2\left\{\left[\left(\frac{1}{4}-x\right)^{-\frac{\cos n \pi x}{n \pi}}-(-1) \times \frac{-\sin n \pi x}{(n \pi)^{2}}\right]_{0}^{1 / 2}+[(x-3 / \pi) x-\cos n \pi\right. \\
& \left.\left[\frac{-\operatorname{sinn\pi x}}{(n \pi)^{2}}\right]_{H_{2}}^{1 .}\right\} \\
& =2\left\{\left[+\frac{1}{4} \cos \frac{\frac{n \pi}{2}}{n \pi}-\frac{\sin \frac{n \pi}{2}}{(n \pi)^{2}}\right]-\left(-\frac{1}{4} \frac{\cos 0}{n \pi}\right)+1\right. \\
& \left.\left[-\frac{1}{4} \frac{\cos n \pi}{n \pi}\right]-\left[\frac{1}{4} \cos \frac{\operatorname{con}}{n \pi}+\frac{\sin \frac{n \pi}{2}}{(n \pi)^{2}}\right]\right] \\
& =2\left\{\frac{1}{4 n \pi}-\frac{2 \sin \frac{n \pi}{2}}{n^{2} \pi^{2}}-\frac{1(-1)^{n}}{4 n \pi}\right\} \\
& =2\left\{1 \frac{-(-1)^{n}}{4 n \pi}-\frac{2 \sin \frac{n \pi}{2}}{n \pi^{2}}\right\}
\end{aligned}
$$

When

$$
\frac{1-(-1)^{n}}{4 n \pi}=0 \quad \sin \frac{n \pi}{2}=0
$$

$$
\begin{aligned}
& \therefore b_{n}=0 \\
& b_{1}=2\left[\frac{1}{2 \pi}-\frac{2}{\pi^{2}}\right]=\frac{1}{\pi} \frac{-4}{\pi^{2}} \\
& b_{3}=2\left[\frac{1}{6 \pi}+\frac{2}{3^{2} \pi^{2}}\right]=\frac{1}{3 \pi}+\frac{4}{\pi^{2} \cdot 3^{2}} \\
& b_{5}=2\left[\frac{1}{10 \pi}-\frac{2}{5^{2} \pi^{2}}\right]=\frac{1}{5 \pi}-\frac{4}{5^{2} \pi^{2}}
\end{aligned}
$$

Parseval's

$$
\begin{aligned}
& \text { If the . Fourier Serves over an } \\
& c<x<c+21 \text { es given as } \\
& f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \frac{n \pi x}{l}+b_{n} \frac{\sin n \pi x}{2}\right] \\
& \text { then } \frac{1}{2 l} \int_{c}^{c+2 l}[f(x)]^{2} d x=\frac{a_{0}^{2}}{4}+\frac{1}{2} \sum_{n=1}^{\infty-0}\left[a_{n}^{2}+b_{n}^{2}\right]
\end{aligned}
$$

Example 1. Find the Fourier sine series for unity in $0<x<\pi$ ana nence shown

$$
1+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\frac{1}{7^{2}}+\ldots \ldots=\frac{\pi^{2}}{8}
$$

Sol. We require half-range Fourier sine series for 1 in $(0, \pi)$

Let

$$
1=\sum_{n=1}^{\infty} b_{n} \sin n x
$$

Then

$$
\begin{aligned}
b_{n} & =\frac{2}{\pi} \int_{0}^{\pi}(1) \sin n x d x=\frac{2}{\pi}\left[-\frac{\cos n x}{n}\right]_{0}^{\pi}=-\frac{2}{n \pi}(\cos n \pi-1) \\
& =\frac{2}{n \pi}\left[1-(-1)^{n}\right]
\end{aligned}
$$

Now $b_{n}=0$ when n is even ; and $b_{n}=\frac{4}{n \pi}$ when n is odd.
Substituting in (1), we get
$\therefore \quad 1=\sum_{m=1}^{\infty} \frac{4}{(2 m-1) \pi} \sin (2 m-1) x \quad$ or $\quad 1=\frac{4}{\pi}\left(\sin x+\frac{\sin 3 x}{3}+\frac{\sin 5 x}{5}+\ldots \ldots\right)$
Now from Parseval's theorem on Fourier constants

$$
\int_{c}^{c+2 l}[f(x)]^{2} d x=2 l\left[\frac{a_{0}{ }^{2}}{4}+\frac{l}{2} \sum_{n=1}^{\infty}\left({a_{n}}^{2}+b_{n}{ }^{2}\right)\right]
$$

Applying (3) to half-range sine series for 1 in $(0, \pi)$

$$
c=0,2 l=\pi, f(x)=1, a_{0}=0, a_{n}=0, \text { and } b_{n}=\frac{4}{(2 m-1) \pi}, m=1,2, \ldots \ldots
$$

We get,

$$
\begin{aligned}
\int_{0}^{\pi}(1)^{2} d x & =\pi \cdot \frac{1}{2} \sum_{m=1}^{\infty} \frac{16}{(2 m-1)^{2}} \cdot \pi^{2} \\
{[x]_{0}^{\pi} } & =\frac{8}{\pi}\left\{\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots \ldots\right\} \quad \text { or } \quad \frac{\pi^{2}}{8}=1+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots \ldots
\end{aligned}
$$

Hence the result.
Example 2. Find Fourier series of x^{2} in $(-\pi, \pi)$. Use Parseval's identity to prove that

$$
\frac{\pi^{4}}{90}=1+\frac{1}{2^{4}}+\frac{1}{3^{4}}+\ldots \ldots
$$

Sol. The Fourier series of x^{2} in $(-\pi, \pi)$ are

$$
\begin{equation*}
x^{2}=\frac{\pi^{2}}{3}+\sum_{n=1}^{\infty} \frac{4(-1)^{n}}{n^{2}} \cos n x \tag{1}
\end{equation*}
$$

Here

$$
a_{0}=\frac{2 \pi^{2}}{3}, a_{n}=\frac{4(-1)^{n}}{n^{2}}, b_{n}=0, f(x)=x^{2}
$$

Now using Parseval's identity to (1)

$$
\begin{aligned}
\int_{-\pi}^{\pi}\left(x^{2}\right)^{2} d x & =2 \pi\left[\frac{\pi^{4}}{9}+\frac{1}{2} \sum_{n=1}^{\infty} \frac{16}{n^{4}}\right] \\
{\left[\frac{x^{5}}{5}\right]_{-\pi}^{\pi} } & =\frac{2 \pi^{5}}{9}+\pi \sum_{n=1}^{\infty} \frac{16}{n^{4}} \text { or } \frac{2 \pi^{5}}{5}-\frac{2 \pi^{5}}{9}=\pi+\sum_{n=1}^{\infty} \frac{16}{n^{4}} \\
\frac{\pi^{4}}{90} & =\sum_{n=1}^{\infty} \frac{1}{n^{4}} \text { or } 1+\frac{1}{2^{4}}+\frac{1}{3^{4}}+\ldots \ldots=\frac{\pi^{4}}{90} .
\end{aligned}
$$

Taylor and Maclaurins Series
If f has dervatices of all order at x_{0}, then We call the Series

$$
\begin{gathered}
\text { ul the series } \\
\sum_{k=0}^{\infty} \frac{f^{k}\left(x_{0}\right)}{k!}\left(x-x_{0}\right)^{k}=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+ \\
\frac{f^{\prime \prime}\left(x_{0}\right)}{2!}\left(x-x_{0}\right)^{2}+\cdots+\frac{f^{k}\left(x_{0}\right)\left(x-x_{0}\right)}{k!} \\
+\cdots \cdot
\end{gathered}
$$

the taylor series for f about $x=x_{0}$. In the Special case where $x_{0}=0$, this series become.

$$
\begin{aligned}
\sum_{k=0}^{\infty} \frac{f^{k}(0)}{k!}\left(x^{k}\right)=f(0)+ & f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\ldots . \\
& +\frac{f^{k}(0)}{k!}(x)^{\prime}+\cdots \cdots \text { in }
\end{aligned}
$$

which case we call it the maclaurins Series for δ. $\sum_{k=0}^{\infty} C_{k} x^{B_{2}} 1_{0}+C_{1} x+C_{2} x 7+c_{k} x^{k}$ is called a power series in x.

1. find the Taylor series expansion for the function

$$
e^{x} \text { about } \quad x=-1
$$

Sols Here $x_{0}=-1$
\therefore The taylor series expansion of the function $f(x)$ about $x=x_{0}$ is given by

$$
\begin{aligned}
& f(x) \text { about } x=x_{0} \text { is given by } \\
& f\left(x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{l_{0}}\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2!}\left(x-x_{0}\right)^{2}+\cdots+\frac{f^{k}\left(x_{0}\right)}{k!}\left(x-x_{0}\right)^{k}+\cdots
\end{aligned}
$$

-1
(49)

Here $f(x)=e^{x}$

$$
f\left(x_{0}\right)=f(-i)=e^{-1}
$$

$$
f^{\prime \prime}(x)=e^{x} \quad f^{\prime}\left(x_{0}\right)=f^{\prime}(-1)=e^{-1}
$$

$$
f^{\prime \prime}(x)=e^{x} \quad f^{\prime \prime}\left(x_{0}\right)=f^{\prime \prime}(-1)=e^{-1}
$$

$$
f^{k}(x)=e^{x} \quad f^{k}\left(x_{0}\right)=f^{k}(-1)=e^{-1}
$$

(5) Taylor Series Expansion of ex e^{x} about $x=-1$ given by

$$
\begin{aligned}
& y \quad e^{-1}+\frac{e^{-1}}{1!}(x--1)+\frac{e^{-1}}{2!}(x--1)^{2}+\cdots+\frac{e}{k} \\
& +\cdots \cdot \\
& =e^{-1}+\frac{e^{-1}}{1!}(x+1)+\frac{e^{-1}}{2!}(x+1)^{2}+\cdots+\frac{e^{-1}!}{k!} \\
& = \\
& \sum_{k=0}^{\infty} \frac{(x+1)^{k}}{k!e}
\end{aligned}
$$

Here

$$
\begin{aligned}
& P_{0}(x)=\overline{f\left(x_{0}\right)}=e^{-1} \\
& P_{1}(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)=e^{-1}\left(x-x_{0}\right)=e^{-1}+e^{-1}(x+1) \\
& P_{2}(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right) \dot{c}\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2!}\left(x-x_{0}\right)^{9}=e^{-1}+i \\
& \vdots \frac{+e^{-1}(x+1)^{3}}{2!} \\
& P_{n}(x)=f\left(x_{0}\right)+\frac{f^{\prime}\left(x_{0}\right)}{1!}\left(x-x_{0}\right)+\cdots+\frac{f^{n}\left(x_{0}\right)}{n!} e x-1 \\
&=e^{-1}+\frac{e^{-1}}{1!}(x-x 1)+\cdots+\frac{e^{-1}}{n!}(x+1)^{v} \\
& P_{0}(x) \text { is called Taylor }
\end{aligned}
$$

$P_{0}(x), P_{1}(x), P_{2}(x), \cdots P_{n}(x)$ is called Taylor Polynomial for function $f(x)$.

Find the maclausin series for (i) $\sin x$ (ii) $\cos x$ (iii) $\frac{1}{1-x}$
(I)

$$
\begin{array}{ll}
f(x)=\sin x . & f(0)=0 \\
f^{\prime}(x)=\cos x & f^{\prime}(0)=1 \\
f^{\prime \prime}(x)=-\sin x & f^{\prime \prime}(0)=0 \\
f^{\prime \prime \prime}(x)=-\cos x & f^{\prime \prime \prime}(0)=-1
\end{array}
$$

Maclausion Series for $\sin x$ is given by

$$
\begin{aligned}
& f(0)+\frac{f^{\prime}(0)}{1!}(x-0)+\frac{f^{\prime \prime}(0)}{21}(x-0)^{2}+\frac{f^{\prime \prime \prime}(0)}{3!}(x-0)^{3}+\cdots \cdot \\
& \frac{+f^{h}(0)}{k!}(x-0)^{k}+\cdots \cdot \\
& f(0)+\frac{f^{\prime}(0)}{1!} x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\frac{f^{\prime \prime}(0)}{3!} x^{3}+\cdots+\frac{f^{k}(0)}{k!} x^{k}+\cdots \cdot \\
& 0+\frac{1}{1!} x+0+\frac{-1}{3!} x^{3}+0+\frac{\left(x^{5}+\cdots\right.}{5!} x^{2} \\
& =x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots+(-1)^{\text {Kt } 2 k+1} \frac{x^{2 k+1)!}}{(2 k+0} \\
& =\sum_{k=0}^{\infty} \frac{(-1)^{k} x^{2 k+1}}{(2 k+1)!} \\
& P_{0}(x)=f(0)=0 \\
& \left.P_{1}(x)=f^{\prime}(x)+f^{\prime}(0) \cdot(x)-0\right) \\
& P_{2}(x)=f(0)+f^{\prime}(0)+f^{\prime \prime}(0)=0+1+0=1
\end{aligned}
$$

$$
\begin{aligned}
& P_{0}(x), P_{1}(x), P_{2}(x) \cdots
\end{aligned}
$$

$$
\begin{aligned}
P_{0}(0) & =f(0)=0 \\
P_{1}(0) & =f(0)+f(0)(x)=0+x \\
P_{n}(0) & =f(0)+f^{\prime}(0) x+\cdots+f^{n}(0) x^{n} \\
& =0+x+0-\frac{x^{3}}{3!}+\frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}
\end{aligned}
$$

$P_{0}(0), P_{1}(0), P_{2}(0) \cdots \quad P_{n}(0)$ is called a mace Polynomial.
(a)

$$
\text { 1) } \begin{aligned}
f(x) & =\cos x \\
f^{\prime}(x) & =-\sin x \\
f^{\prime}(x) & =-\cos x \\
f^{\prime \prime}(x) & =\sin x
\end{aligned}
$$

maclusion Series expansion for $\cos x$ is given by

$$
\begin{aligned}
& f(0)+\frac{f^{\prime}(0)}{1!} x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\frac{f^{\prime \prime \prime}(0)}{3!} x^{3}+\cdots+f^{k \prime \prime}(1) \\
& 1+0+\frac{x^{2}}{2!}+0+\frac{x^{4}}{4!}+0 \cdots+(-1)! \\
& =1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\cdots+(-1)^{k} \frac{x^{2 k}}{2 k!}+\cdots
\end{aligned}
$$

(3)

$$
\begin{aligned}
& f(x)=\frac{1}{1-x} \\
& f(0)=1 \quad f^{\prime}(0)=1 \\
& f^{\prime}(x)=\frac{-1}{(1-x)^{2}} \times(-1)=\frac{1}{(1-x)^{2}} \quad f^{\prime \prime}(0)=2=2! \\
& f^{\prime \prime}(x)=\frac{-2}{(1-x)^{3}} \times(-1)=\quad f^{\prime \prime}(0)=6=3! \\
& f^{\prime \prime \prime}(x)=\frac{3 \times 2}{(1-x)^{4}}=\frac{6}{(1-x)^{4}}
\end{aligned}
$$

$$
\text { - } f^{k}(x)=\frac{k!}{(1-x)^{k+1}}
$$

$$
f^{k}(0)=k!
$$

maclausion Series expansion of $\frac{1}{1-x}$ is, gicuon by

$$
\begin{aligned}
& f(0)+\frac{f^{\prime}(0)}{1!} x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\cdots+\frac{f^{k}(0)}{k!} x^{k}+\cdots \\
& 1+\frac{1}{1!} x+\frac{2!}{2!} x^{2}+\frac{3!}{3!} x^{3}+\frac{\cdots+k!}{k!} x^{k!}-1 \\
& =1+\frac{x}{1!} x^{2}+x^{3}+\cdots+x_{1}^{k}+\cdots \\
& =\sum_{k=0}^{\infty} x^{k}
\end{aligned}
$$

* find the Taylor series expansion of $\frac{1}{x}$ about $x=-1$

$$
\begin{aligned}
& \text { find the Taylor Series } \\
& f^{\prime}(x)=\frac{1}{x} \quad f^{\prime}\left(x_{0}\right)=f^{\prime}(-1)=\frac{-1}{1}=-1 \\
& f^{\prime}(x)=\frac{-1}{x^{2}} \quad f^{\prime \prime}\left(x_{0}\right)=\frac{2}{-1}=\frac{-2}{} \\
& f^{\prime \prime}(x)=\frac{-2}{x^{3}}(-1)=\frac{2}{x^{3}} \quad f^{\prime \prime \prime}\left(x_{0}\right)=f^{\prime \prime \prime}(-1)=-\frac{-6}{} \\
& f^{\prime \prime \prime}(x)=\frac{-6}{x^{4}} \\
& f(-1)+\frac{f^{\prime}(-1)}{1!}(x+1)+\frac{f^{\prime \prime}(-1)}{2!}(x+1)^{2}+\cdots+\frac{f^{k}(-1)}{k!}(x+1)^{k} \\
& \left.=-1+\frac{-1}{11}(x+1)+\frac{-2}{2!}(x+1)^{2}+\cdots+\cdots+(x+1)^{k}+\cdots\right] \\
& =-1-(x+1)-(x+1)^{2}+\cdots \\
& =-11+(x+1)+(x+1)^{2}+\cdots \\
& =-\cdots
\end{aligned}
$$

$$
\begin{gathered}
\text { (53) } \\
\text { * } \begin{array}{ll}
f(x)=\ln x \quad, x_{0}=e \\
f(x)=\ln x \quad f\left(x_{0}\right)=f(e)=\ln e=1 \\
f^{\prime}(x)=\frac{1}{x} \quad f^{\prime}\left(x_{0}\right)=f^{\prime}(e)=\frac{1}{e} \\
f^{\prime \prime}(x)=\frac{-1}{x^{2}} \quad f^{\prime \prime}\left(x_{0}\right)=f^{\prime \prime}(e)=\frac{-1}{e^{2}} \\
f^{\prime \prime \prime}(x)=\frac{-2}{x^{3}} \\
\text { (if) }=\frac{2}{x^{3}} \quad f^{\prime \prime \prime}\left(x_{0}\right)=f^{\prime \prime \prime}(e)=\frac{2}{e^{3}} \\
\text { Taylor seriesexpansion of } \ln x \text { g geven by }
\end{array}
\end{gathered}
$$

$$
\begin{aligned}
& \text { Taylor seriesexpansion }+\frac{f^{\prime}(e)(x-e)+\frac{f^{\prime \prime}(e)}{2!}\left(x^{2}\right)+\frac{\left.f^{\prime \prime} / e\right)(x-e)^{3}}{3!}+\cdots}{} \begin{array}{l}
f(e)+\frac{1}{1!}+\frac{1}{2!}(x-e)+\frac{-1}{e^{2}}(x-e)^{2}+\frac{1}{3!} \frac{2}{e^{3}}(x-e) \\
= \\
=1+\left[\frac{1}{11} \frac{(x-e)}{e}-\frac{(x-e)^{2}}{2 \cdot e^{2}}+\frac{(x-e)^{3}}{3 e^{3}}+\cdots(-)^{k+1} \frac{(x-e)}{e^{k}}\right. \\
=1+\sum_{k=0}^{\infty}(-1)^{k+1} \frac{(x-e)^{k}}{k e^{k}}
\end{array}
\end{aligned}
$$

1.0.
$f(x)=\sin \pi x$ about $x=0$
$f(x)=x e^{x} \quad$ about $x=0$

$$
\begin{aligned}
\rightarrow f(0) & =0 \\
f^{\prime}(x) & =x e^{x}+e^{x} \quad f^{\prime}(0)=1 \\
f^{\prime \prime}(x) & =x e^{x}+2 e^{x} \quad f^{\prime \prime}(0)=2 \\
x e^{x} & =0+\frac{1}{x+} \\
& =x+\frac{2 x^{1!}}{1!}+\frac{x^{3}}{2}+\frac{3}{2!}+\frac{3}{3!n}+\cdots \quad+\frac{k}{2!} x^{3}+\cdots
\end{aligned}
$$

$x)^{m}$. Verify that
$(-1) \cdots(m-k+1)$

BINOMIAL SERIES
If m is a real number, then the Maclaurin series for $(1+x)^{m}$ is called the binomial series; it is given by

In the case where m is a nonnegative integer, the function $f(x)=(1+x)^{m}$ is a polynomial of degree m, so

$$
f^{(m+1)}(0)=f^{(m+2)}(0)=f^{(m+3)}(0)=\cdots=0
$$

and the binomial series reduces to the familiar binomial expansion

$$
(1+x)^{m}=1+m x+\frac{m(m-1)}{2!} x^{2}+\frac{m(m-1)(m-2)}{3!} x^{3}+\cdots+x^{m}
$$

which is valid for $-\infty<x<+\infty$.
It can be proved that if m is not a nonnegative integer, then the binomial series converges to $(1+x)^{m}$ if $|x|<1$. Thus, for such values of x

$$
\begin{equation*}
(1+x)^{m}=1+m x+\frac{m(m-1)}{2!} x^{2}+\cdots+\frac{m(m-1) \cdots(m-k+1)}{k!} x^{k}+\cdots \tag{17}
\end{equation*}
$$

or in sigma notation,

$$
\begin{equation*}
(1+x)^{m}=1+\sum_{k=1}^{\infty} \frac{m(m-1) \cdots(m-k+1)}{k!} x^{k} \quad \text { if }|x|<1 \tag{18}
\end{equation*}
$$

- Example 4 Find binomial series for

$$
\begin{array}{ll}
\text { (a) } \frac{1}{(1+x)^{2}} & \text { (b) } \frac{1}{\sqrt{1+x}}
\end{array}
$$

Solution (a). Since the general term of the binomial series is complicated, you may find it helpful to write out some of the beginning terms of the series, as in Formula (17), to see developing patterns. Substituting $m=-2$ in this formula yields

$$
\begin{aligned}
\frac{1}{(1+x)^{2}}=(1+x)^{-2}= & 1+(-2) x+\frac{(-2)(-3)}{2!} x^{2} \\
& +\frac{(-2)(-3)(-4)}{3!} x^{3}+\frac{(-2)(-3)(-4)(-5)}{4!} x^{4}+\cdots \\
= & 1-2 x+\frac{3!}{2!} x^{2}-\frac{4!}{3!} x^{3}+\frac{5!}{4!} x^{4}-\cdots \\
= & 1-2 x+3 x^{2}-4 x^{3}+5 x^{4}-\cdots \\
= & \sum_{k=0}^{\infty}(-1)^{k}(k+1) x^{k}
\end{aligned}
$$

